Health Scope

Published by: Kowsar

Transformation and Stabilization of Lead and Chromium Using Aspergillus sp. and Bio-charcoal Amendment

Santosh Kr. Karn 1 , 2 , * , Sharadhanshu Raj 2 and Neha Khatkar 2
Authors Information
1 Department of Biotechnology, National Institute of Technology, Raipur (CG), India
2 Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, Dehradun (UK)
Article information
  • Health Scope: August 2018, 7 (3); e79962
  • Published Online: June 11, 2018
  • Article Type: Research Article
  • Received: September 16, 2016
  • Revised: November 23, 2016
  • Accepted: December 15, 2016
  • DOI: 10.5812/jhealthscope.79962

To Cite: Karn S K, Raj S, Khatkar N. Transformation and Stabilization of Lead and Chromium Using Aspergillus sp. and Bio-charcoal Amendment, Health Scope. 2018 ; 7(3):e79962. doi: 10.5812/jhealthscope.79962.

Copyright © 2018, Journal of Health Scope. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results and Discussion
  • 1. Volpe A, Pagano M, Mascolo G, Lopez A, Ciannarella R, Locaputo V. Simultaneous Cr(VI) reduction and non-ionic surfactant oxidation by peroxymonosulphate and iron powder. Chemosphere. 2013;91(9):1250-6. doi: 10.1016/j.chemosphere.2013.02.012. [PubMed: 23499224].
  • 2. Zayed AM, Terry N. Chromium in the environment: factors affecting biological remediation. Plant Soil. 2003;249:139-56.
  • 3. Cho DH, Yoo MH, Kim EY. Biosorption of lead (Pb2+) from aqueous solution by Rhodotorula aurantiaca. J Microbiol Biotechnol. 2004;14:250-5.
  • 4. U.S EPA. Air Quality Criteria for Lead. Final Report. U.S. Environmental Protection Agency, Washington, D.C; 2006. p. EPA/600/R-5/144aF-bF.
  • 5. Damek-Proprawa M, Sawicka-Kapusta K. Damage to the liver, kidney and testes with reference to burden of heavy metals in yellow-necked mice from areas around steel workers and zinc smelters in Poland. Toxicolog. 2003;186:1-10.
  • 6. EC Commission Regulation (EC). No. 466/2001 of 8 March 2001. Official J Europ Communit. 2001;1:77.
  • 7. USFDA (United States Food and Drug Administration). Guidelines Document for cadmium in shellfish. Washington, DC: US. Department of Health and Human Services, Public Health Service Office, Office of Seafood (HFS-416); 1993. 44 p.
  • 8. Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut. 2011;159(12):3269-82. doi: 10.1016/j.envpol.2011.07.023. [PubMed: 21855187].
  • 9. Yuan JH, Xu RK. The amelioration effect of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Management. 2011;27:110-5.
  • 10. Tessier A, Campbell PGC, Bisson M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytic Chem. 1979;51:844-51.
  • 11. Cao X, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol. 2010;101(14):5222-8. doi: 10.1016/j.biortech.2010.02.052. [PubMed: 20206509].
  • 12. Urone PF. Stability of colorimetric agent for chromium s-diphenylcarbazide in various solvent. Anal Chem. 1955;27:1354-5.
  • 13. Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS. Role of assisted natural remediation in environmental cleanup. Geoderma. 2004;122:121-42.
  • 14. Krzyztof L, Danutta W, Irena K. Metal contamination of farming soils affected by industry. Environ Int. 2004;30:159-65.
  • 15. Huang DL, Zeng GM, Jiang XY, Feng CL, Yu HY, Huang GH, et al. Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. J Hazard Mater. 2006;134(1-3):268-76. doi: 10.1016/j.jhazmat.2005.11.021. [PubMed: 16343764].
  • 16. Krishna KR, Philip L. Bioremediation of Cr(VI) in contaminated soils. J Hazard Mater. 2005;121(1-3):109-17. doi: 10.1016/j.jhazmat.2005.01.018. [PubMed: 15885411].
  • 17. Bennett Reuel M, Paul Rodrigo FC, Gershon SB, Gina RD. Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples. Chemist Ecolog. 2013;29:320-8.
  • 18. Kumar R, Singh P, Dhir B, Sharma AK, Mehta D. Potential of Some Fungal and Bacterial Species in Bioremediation of Heavy Metals. J Nuclear Physics Material Sci Radiat Applicat. 2014;1:213-23.
  • 19. Atkinson CJ, Fitzgerald JD, Hipps NA. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils. Rev Plant Soil. 2010;337:1-18.
  • 20. Cui L, Pan G, Li L, Yan J, Zhang A, Bian R, et al. The reduction of wheat Cd uptake in contaminated soil via biochar amendment: A two year field experiment. BioResourc. 2012;7:5666-76.
  • 21. Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012;46(3):854-62. doi: 10.1016/j.watres.2011.11.058. [PubMed: 22189294].
  • 22. Cao XD, Ma LN, Gao B, Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol. 2009;43:3285-91.
  • 23. Trakal L, Komarek M, Szakova J, Zemanova V, Tlustos P. Biochar application to metal-contaminated soil: Evaluating of Cd, Cu, Pb and Zn sorption behavior using single- and multi-element sorption experiment. Plant Soil Environ. 2011;57:372-80.
  • 24. Choppala GK, Bolan NS, Megharaj M, Chen Z, Naidu R. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J Environ Qual. 2012;41(4):1175-84. doi: 10.2134/jeq2011.0145. [PubMed: 22751060].
  • 25. Bolan NS, Choppala G, Kunhikrishnan A, Park J, Naidu R. Microbial transformation of trace elements in soils in relation to bioavailability and remediation. Rev Environ Contam Toxicol. 2013;225:1-56. doi: 10.1007/978-1-4614-6470-9_1. [PubMed: 23494555].
  • 26. Rinklebe J, Shaheen SM, Frohne T. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere. 2016;142:41-7. doi: 10.1016/j.chemosphere.2015.03.067. [PubMed: 25900116].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments