Health Scope

Published by: Kowsar
Uncorrected Proof scheduled for 8 (2)

Adsorption of Sulfur Dioxide on Clinoptilolite/Nano Iron Oxide and Natural Clinoptilolite

Mina Mahmoodi Meimand 1 , Neda Javid 2 and Mohammad Malakootian 1 , 3 , *
Authors Information
1 Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
2 Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran
3 Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
Article information

To Cite: Mahmoodi Meimand M, Javid N, Malakootian M. Adsorption of Sulfur Dioxide on Clinoptilolite/Nano Iron Oxide and Natural Clinoptilolite, Health Scope. Online ahead of Print ; In Press(In Press):e69158. doi: 10.5812/jhealthscope.69158.

Abstract
Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Wark K, Warner CF. Air pollution: Its origin and control. 1981.
  • 2. Song XD, Wang S, Hao C, Qiu JS. Investigation of SO2 gas adsorption in metal–organic frameworks by molecular simulation. Inorg Chem Comm. 2014;46:277-81. doi: 10.1016/j.inoche.2014.06.003.
  • 3. Liu Z, Mao X, Tu J, Jaccard M. A comparative assessment of economic-incentive and command-and-control instruments for air pollution and CO2 control in China's iron and steel sector. J Environ Manage. 2014;144:135-42. doi: 10.1016/j.jenvman.2014.05.031. [PubMed: 24945700].
  • 4. Erdogan Alver B. A comparative adsorption study of C2H4 and SO2 on clinoptilolite-rich tuff: Effect of acid treatment. J Hazard Mater. 2013;262:627-33. doi: 10.1016/j.jhazmat.2013.09.014. [PubMed: 24100260].
  • 5. Girard JE, Girard J. Principles of environmental chemistry. Jones & Bartlett Publishers; 2013.
  • 6. Geravandi S, Goudarzi G, Mohammadi MJ, Taghavirad SS, Salmanzadeh S. Sulfur and nitrogen dioxide exposure and the incidence of health endpoints in Ahvaz, Iran. Health Scope. 2015;4(2). doi: 10.17795/jhealthscope-24318.
  • 7. Nagase Y, Silva ECD. Acid rain in China and Japan: A game-theoretic analysis. Reg Sci Urban Econ. 2007;37(1):100-20. doi: 10.1016/j.regsciurbeco.2006.08.001.
  • 8. Savage M, Cheng Y, Easun TL, Eyley JE, Argent SP, Warren MR, et al. Selective adsorption of sulfur dioxide in a robust metal-organic framework material. Adv Mater. 2016;28(39):8705-11. doi: 10.1002/adma.201602338. [PubMed: 27529671].
  • 9. Malakootian M, Jafarzadeh Haghighifard N, Moussavi G, Hossaini H. Investigation of ammonium ion adsorption onto regenerated spent bleaching earth: Parameters and equilibrium study. Environ Eng Manag J (EEMJ). 2016;15(4).
  • 10. Malakootian M, Jafari Mansoorian H, Hosseini A, Khanjani N. Evaluating the efficacy of alumina/carbon nanotube hybrid adsorbents in removing Azo Reactive Red 198 and Blue 19 dyes from aqueous solutions. Process Saf Environ Protect. 2015;96:125-37. doi: 10.1016/j.psep.2015.05.002.
  • 11. Malakootian M, Mohammadi S, Amirmahani N, Nasiri Z, Nasiri A. Kinetics, thermodynamics and equilibrium studies on adsorption of Reactive Red 198 from textile wastewater by coral limestone as a natural sorbent. J Community Health Res. 2016;5(2):73-89.
  • 12. Gollakota SV, Chriswell CD. Study of an adsorption process using silicalite for sulfur dioxide removal from combustion gases. Ind Eng Chem Res. 1988;27(1):139-43. doi: 10.1021/ie00073a025.
  • 13. Rao SNR, Waddell E, Mitchell MB, White MG. Selective sulfur dioxide adsorbents prepared from designed dispersions of groups IA and IIA metal oxides on alumina. J Catal. 1996;163(1):176-85. doi: 10.1006/jcat.1996.0317.
  • 14. Seredych M, Bandosz TJ. Effects of surface features on adsorption of SO2 on graphite oxide/Zr(OH)4 composites. J Phys Chem C. 2010;114(34):14552-60. doi: 10.1021/jp1051479.
  • 15. Dahlan I, Mei GM, Kamaruddin AH, Mohamed AR, Lee KT. Removal of SO2 and NO over rice husk ash (RHA)/CaO-supported metal oxides. J Eng Sci Tech. 2008;3(2):109-16.
  • 16. Li G, Wang Q, Jiang T, Luo J, Rao M, Peng Z. Roll-up effect of sulfur dioxide adsorption on zeolites FAU 13X and LTA 5A. Adsorption. 2017;23(5):699-710. doi: 10.1007/s10450-017-9887-0.
  • 17. Rosas JM, Ruiz-Rosas R, Rodriguez-Mirasol J, Cordero T. Kinetic study of SO2 removal over lignin-based activated carbon. Chem Eng J. 2017;307:707-21. doi: 10.1016/j.cej.2016.08.111.
  • 18. Chen Y, Huang B, Huang M, Lu Q, Huang B. Sticky rice lime mortar-inspired in situ sustainable design of novel calcium-rich activated carbon monoliths for efficient SO2 capture. J Clean Prod. 2018;183:449-57. doi: 10.1016/j.jclepro.2018.02.167.
  • 19. Shokuhi Rad A, Chourani A. Nickel based paddle-wheel metal–organic frameworks towards adsorption of O3 and SO2 molecules: Quantum-chemical calculations. J Inorg Organomet Polymer Mater. 2017;27(6):1826-34. doi: 10.1007/s10904-017-0648-z.
  • 20. Luo L, Guo Y, Zhu T, Zheng Y. Adsorption species distribution and multicomponent adsorption mechanism of SO2, NO, and CO2 on commercial adsorbents. Energ Fuel. 2017;31(10):11026-33. doi: 10.1021/acs.energyfuels.7b01422.
  • 21. Allen SJ, Ivanova E, Koumanova B. Adsorption of sulfur dioxide on chemically modified natural clinoptilolite. Acid modification. Chem Eng J. 2009;152(2-3):389-95. doi: 10.1016/j.cej.2009.04.063.
  • 22. Ivanova E, Koumanova B. Adsorption of sulfur dioxide on natural clinoptilolite chemically modified with salt solutions. J Hazard Mater. 2009;167(1-3):306-12. doi: 10.1016/j.jhazmat.2008.12.124. [PubMed: 19200655].
  • 23. Tomas-Alonso F, Palacios Latasa JM. Synthesis and surface properties of zinc ferrite species in supported sorbents for coal gas desulphurisation. Fuel Process Tech. 2004;86(2):191-203. doi: 10.1016/j.fuproc.2004.03.004.
  • 24. Sekhavatjou M, Moradi R, Hosseini Alhashemi A, Taghinia Hejabi A. A new method for sulfur components removal from sour gas through application of zinc and iron oxides nanoparticles. Int J Environ Res. 2014;8(2):273-8. doi: 10.22059/ijer.2014.716.
  • 25. Abbasi A, Sardroodi JJ, Ebrahimzade AR. The adsorption of SO2 on TiO2 anatase nanoparticles: A density functional theory study. Can J Chem. 2015;94(1):78-87. doi: 10.1139/cjc-2015-0065.
  • 26. Arcibar-Orozco JA, Rangel-Mendez JR, Bandosz TJ. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles. J Hazard Mater. 2013;246-247:300-9. doi: 10.1016/j.jhazmat.2012.12.001.
  • 27. Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR. The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B Environ. 2003;43(2):151-62. doi: 10.1016/s0926-3373(02)00297-7.
  • 28. Liu XL, Guo JX, Chu YH, Luo DM, Yin HQ, Sun MC, et al. Desulfurization performance of iron supported on activated carbon. Fuel. 2014;123:93-100. doi: 10.1016/j.fuel.2014.01.068.
  • 29. Garshasbi V, Jahangiri M, Anbia M. Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays. Appl Surf Sci. 2017;393:225-33. doi: 10.1016/j.apsusc.2016.09.161.
  • 30. Jesudoss SK, Vijaya JJ, Grace AA, Kennedy LJ, Sivasanker S, Kathirgamanathan P. Hierarchical ZSM-5 zeolite nanosurfaces with high porosity—structural, morphological and textural investigations. In: Ebenezar J, editor. Recent trends in materials science and applications. 189. Springer Proceedings in Physics; 2017. p. 109-18. doi: 10.1007/978-3-319-44890-9_11.
  • 31. American Public Health Association; American Water Works Association; Water Pollution Control Federation; Water Environment Federation. Standard methods for the examination of water and wastewater. 2. American Public Health Association; 1915.
  • 32. Ho YS, McKay. G . The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000;34(3):735-42. doi: 10.1016/s0043-1354(99)00232-8.
  • 33. Zhao C, Guo Y, Li W, Bu C, Wang X, Lu P. Experimental and modeling investigation on CO2 sorption kinetics over K2CO3-modified silica aerogels. Chem Eng J. 2017;312:50-8. doi: 10.1016/j.cej.2016.11.121.
  • 34. Chattaraj S, Mohanty D, Kumar T, Halder G. Thermodynamics, kinetics and modeling of sorption behaviour of coalbed methane – A review. J Unconvent Oil Gas Resource. 2016;16:14-33. doi: 10.1016/j.juogr.2016.09.001.
  • 35. Vega ED, Narda GE, Ferretti FH. Adsorption of citric acid from dilute aqueous solutions by hydroxyapatite. J Colloid Interface Sci. 2003;268(1):37-42. [PubMed: 14611769].
  • 36. Sun L, Zhu X. Practical and theoretical study of the adsorption performances of straw-based tertiary amine-supported material toward sulfur dioxide in flue gas. Bioresources. 2017;13(1):1132-42. doi: 10.15376/biores.13.1.1132-1142.
  • 37. Ruiz-Baltazar A, Esparza R, Gonzalez M, Rosas G, Perez R. Preparation and characterization of natural zeolite modified with iron nanoparticles. J Nanomater. 2015;16(1):247. doi: 10.1155/2015/364763.
  • 38. Al-Harahsheh M, Shawabkeh R, Batiha M, Al-Harahsheh A, Al-Zboon K. Sulfur dioxide removal using natural zeolitic tuff. Fuel Process Tech. 2014;126:249-58. doi: 10.1016/j.fuproc.2014.04.025.
  • 39. Zhou X, Yi H, Tang X, Deng H, Liu H. Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber. Chem Eng J. 2012;200-202:399-404. doi: 10.1016/j.cej.2012.06.013.
  • 40. Vahdat Parast Z, Asilian H, Jonidi Jafari A. Adsorption of xylene from air by natural Iranian zeolite. Health Scope. 2014;3(3). doi: 10.17795/jhealthscope-17528.
  • 41. Mofidi A, Asilian H, Jonidi Jafari A. Adsorption of volatile organic compounds on fluidized activated carbon bed. Health Scope. 2013;2(2):84-9. doi: 10.17795/jhealthscope-9833.
  • 42. Zhang T, Li J, Yu S, Wang Y. Preparation and characterization of a new desulfurizer and its performance on removal of SO2. J Geosci Environ Protect. 2014;2(2):68-76. doi: 10.4236/gep.2014.22011.
  • 43. Bahiraei A, Afkhami A, Madrakian T, Gheitaran R. Preparation and characterization of γ-Fe2O3 nanoparticles and investigation of its adsorption performance for sulfide, sulfite and thiosulfate from aqueous solutions using ultrasonic assisted method: Modeling and optimization. Ultrason Sonochem. 2018;40:1049-58. doi: 10.1016/j.ultsonch.2017.08.035.
  • 44. Hernandez MA, Corona L, Gonzalez AI, Rojas F, Lara VH, Silva F. Quantitative study of the adsorption of aromatic hydrocarbons (benzene, toluene, and p-xylene) on dealuminated clinoptilolites. Ind Eng Chem Res. 2005;44(9):2908-16. doi: 10.1021/ie049276w.
  • 45. Malakootian M, Nori Sepehr M, Bahraini S, Zarrabi M. [Capacity of natural and modified zeolite with cationic surfactant in removal of antibiotic tetracycline from aqueous solutions]. Koomesh. 2016;17(3):779-88. Persian.
  • 46. Henn KW, Waddill DW. Utilization of nanoscale zero-valent iron for source remediation—A case study. Remed J. 2006;16(2):57-77. doi: 10.1002/rem.20081.
  • 47. Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L. Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Separ Purif Tech. 2009;68(3):312-9. doi: 10.1016/j.seppur.2009.05.020.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments