Health Scope

Published by: Neoscriber Demo Publisher

Adsorption of Sulfur Dioxide on Clinoptilolite/Nano Iron Oxide and Natural Clinoptilolite

Mina Mahmoodi Meimand ORCID 1 , Neda Javid ORCID 2 and Mohammad Malakootian ORCID 1 , 3 , *
Authors Information
1 Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
2 Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran
3 Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
Article information
  • Health Scope: 8 (2); e69158
  • Published Online: March 6, 2019
  • Article Type: Research Article
  • Received: April 7, 2018
  • Revised: June 30, 2018
  • Accepted: July 9, 2018
  • DOI: 10.5812/jhealthscope.69158

To Cite: Mahmoodi Meimand M, Javid N, Malakootian M. Adsorption of Sulfur Dioxide on Clinoptilolite/Nano Iron Oxide and Natural Clinoptilolite, Health Scope. Online ahead of Print ; 8(2):e69158. doi: 10.5812/jhealthscope.69158.

Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Wark K, Warner CF. Air pollution: Its origin and control. 1981.
  • 2. Song XD, Wang S, Hao C, Qiu JS. Investigation of SO2 gas adsorption in metal–organic frameworks by molecular simulation. Inorg Chem Comm. 2014;46:277-81. doi: 10.1016/j.inoche.2014.06.003.
  • 3. Liu Z, Mao X, Tu J, Jaccard M. A comparative assessment of economic-incentive and command-and-control instruments for air pollution and CO2 control in China's iron and steel sector. J Environ Manage. 2014;144:135-42. doi: 10.1016/j.jenvman.2014.05.031. [PubMed: 24945700].
  • 4. Erdogan Alver B. A comparative adsorption study of C2H4 and SO2 on clinoptilolite-rich tuff: Effect of acid treatment. J Hazard Mater. 2013;262:627-33. doi: 10.1016/j.jhazmat.2013.09.014. [PubMed: 24100260].
  • 5. Girard JE, Girard J. Principles of environmental chemistry. Jones & Bartlett Publishers; 2013.
  • 6. Geravandi S, Goudarzi G, Mohammadi MJ, Taghavirad SS, Salmanzadeh S. Sulfur and nitrogen dioxide exposure and the incidence of health endpoints in Ahvaz, Iran. Health Scope. 2015;4(2). doi: 10.17795/jhealthscope-24318.
  • 7. Nagase Y, Silva ECD. Acid rain in China and Japan: A game-theoretic analysis. Reg Sci Urban Econ. 2007;37(1):100-20. doi: 10.1016/j.regsciurbeco.2006.08.001.
  • 8. Savage M, Cheng Y, Easun TL, Eyley JE, Argent SP, Warren MR, et al. Selective adsorption of sulfur dioxide in a robust metal-organic framework material. Adv Mater. 2016;28(39):8705-11. doi: 10.1002/adma.201602338. [PubMed: 27529671].
  • 9. Malakootian M, Jafarzadeh Haghighifard N, Moussavi G, Hossaini H. Investigation of ammonium ion adsorption onto regenerated spent bleaching earth: Parameters and equilibrium study. Environ Eng Manag J (EEMJ). 2016;15(4).
  • 10. Malakootian M, Jafari Mansoorian H, Hosseini A, Khanjani N. Evaluating the efficacy of alumina/carbon nanotube hybrid adsorbents in removing Azo Reactive Red 198 and Blue 19 dyes from aqueous solutions. Process Saf Environ Protect. 2015;96:125-37. doi: 10.1016/j.psep.2015.05.002.
  • 11. Malakootian M, Mohammadi S, Amirmahani N, Nasiri Z, Nasiri A. Kinetics, thermodynamics and equilibrium studies on adsorption of Reactive Red 198 from textile wastewater by coral limestone as a natural sorbent. J Community Health Res. 2016;5(2):73-89.
  • 12. Gollakota SV, Chriswell CD. Study of an adsorption process using silicalite for sulfur dioxide removal from combustion gases. Ind Eng Chem Res. 1988;27(1):139-43. doi: 10.1021/ie00073a025.
  • 13. Rao SNR, Waddell E, Mitchell MB, White MG. Selective sulfur dioxide adsorbents prepared from designed dispersions of groups IA and IIA metal oxides on alumina. J Catal. 1996;163(1):176-85. doi: 10.1006/jcat.1996.0317.
  • 14. Seredych M, Bandosz TJ. Effects of surface features on adsorption of SO2 on graphite oxide/Zr(OH)4 composites. J Phys Chem C. 2010;114(34):14552-60. doi: 10.1021/jp1051479.
  • 15. Dahlan I, Mei GM, Kamaruddin AH, Mohamed AR, Lee KT. Removal of SO2 and NO over rice husk ash (RHA)/CaO-supported metal oxides. J Eng Sci Tech. 2008;3(2):109-16.
  • 16. Li G, Wang Q, Jiang T, Luo J, Rao M, Peng Z. Roll-up effect of sulfur dioxide adsorption on zeolites FAU 13X and LTA 5A. Adsorption. 2017;23(5):699-710. doi: 10.1007/s10450-017-9887-0.
  • 17. Rosas JM, Ruiz-Rosas R, Rodriguez-Mirasol J, Cordero T. Kinetic study of SO2 removal over lignin-based activated carbon. Chem Eng J. 2017;307:707-21. doi: 10.1016/j.cej.2016.08.111.
  • 18. Chen Y, Huang B, Huang M, Lu Q, Huang B. Sticky rice lime mortar-inspired in situ sustainable design of novel calcium-rich activated carbon monoliths for efficient SO2 capture. J Clean Prod. 2018;183:449-57. doi: 10.1016/j.jclepro.2018.02.167.
  • 19. Shokuhi Rad A, Chourani A. Nickel based paddle-wheel metal–organic frameworks towards adsorption of O3 and SO2 molecules: Quantum-chemical calculations. J Inorg Organomet Polymer Mater. 2017;27(6):1826-34. doi: 10.1007/s10904-017-0648-z.
  • 20. Luo L, Guo Y, Zhu T, Zheng Y. Adsorption species distribution and multicomponent adsorption mechanism of SO2, NO, and CO2 on commercial adsorbents. Energ Fuel. 2017;31(10):11026-33. doi: 10.1021/acs.energyfuels.7b01422.
  • 21. Allen SJ, Ivanova E, Koumanova B. Adsorption of sulfur dioxide on chemically modified natural clinoptilolite. Acid modification. Chem Eng J. 2009;152(2-3):389-95. doi: 10.1016/j.cej.2009.04.063.
  • 22. Ivanova E, Koumanova B. Adsorption of sulfur dioxide on natural clinoptilolite chemically modified with salt solutions. J Hazard Mater. 2009;167(1-3):306-12. doi: 10.1016/j.jhazmat.2008.12.124. [PubMed: 19200655].
  • 23. Tomas-Alonso F, Palacios Latasa JM. Synthesis and surface properties of zinc ferrite species in supported sorbents for coal gas desulphurisation. Fuel Process Tech. 2004;86(2):191-203. doi: 10.1016/j.fuproc.2004.03.004.
  • 24. Sekhavatjou M, Moradi R, Hosseini Alhashemi A, Taghinia Hejabi A. A new method for sulfur components removal from sour gas through application of zinc and iron oxides nanoparticles. Int J Environ Res. 2014;8(2):273-8. doi: 10.22059/ijer.2014.716.
  • 25. Abbasi A, Sardroodi JJ, Ebrahimzade AR. The adsorption of SO2 on TiO2 anatase nanoparticles: A density functional theory study. Can J Chem. 2015;94(1):78-87. doi: 10.1139/cjc-2015-0065.
  • 26. Arcibar-Orozco JA, Rangel-Mendez JR, Bandosz TJ. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles. J Hazard Mater. 2013;246-247:300-9. doi: 10.1016/j.jhazmat.2012.12.001.
  • 27. Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR. The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B Environ. 2003;43(2):151-62. doi: 10.1016/s0926-3373(02)00297-7.
  • 28. Liu XL, Guo JX, Chu YH, Luo DM, Yin HQ, Sun MC, et al. Desulfurization performance of iron supported on activated carbon. Fuel. 2014;123:93-100. doi: 10.1016/j.fuel.2014.01.068.
  • 29. Garshasbi V, Jahangiri M, Anbia M. Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays. Appl Surf Sci. 2017;393:225-33. doi: 10.1016/j.apsusc.2016.09.161.
  • 30. Jesudoss SK, Vijaya JJ, Grace AA, Kennedy LJ, Sivasanker S, Kathirgamanathan P. Hierarchical ZSM-5 zeolite nanosurfaces with high porosity—structural, morphological and textural investigations. In: Ebenezar J, editor. Recent trends in materials science and applications. 189. Springer Proceedings in Physics; 2017. p. 109-18. doi: 10.1007/978-3-319-44890-9_11.
  • 31. American Public Health Association; American Water Works Association; Water Pollution Control Federation; Water Environment Federation. Standard methods for the examination of water and wastewater. 2. American Public Health Association; 1915.
  • 32. Ho YS, McKay. G . The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000;34(3):735-42. doi: 10.1016/s0043-1354(99)00232-8.
  • 33. Zhao C, Guo Y, Li W, Bu C, Wang X, Lu P. Experimental and modeling investigation on CO2 sorption kinetics over K2CO3-modified silica aerogels. Chem Eng J. 2017;312:50-8. doi: 10.1016/j.cej.2016.11.121.
  • 34. Chattaraj S, Mohanty D, Kumar T, Halder G. Thermodynamics, kinetics and modeling of sorption behaviour of coalbed methane – A review. J Unconvent Oil Gas Resource. 2016;16:14-33. doi: 10.1016/j.juogr.2016.09.001.
  • 35. Vega ED, Narda GE, Ferretti FH. Adsorption of citric acid from dilute aqueous solutions by hydroxyapatite. J Colloid Interface Sci. 2003;268(1):37-42. [PubMed: 14611769].
  • 36. Sun L, Zhu X. Practical and theoretical study of the adsorption performances of straw-based tertiary amine-supported material toward sulfur dioxide in flue gas. Bioresources. 2017;13(1):1132-42. doi: 10.15376/biores.13.1.1132-1142.
  • 37. Ruiz-Baltazar A, Esparza R, Gonzalez M, Rosas G, Perez R. Preparation and characterization of natural zeolite modified with iron nanoparticles. J Nanomater. 2015;16(1):247. doi: 10.1155/2015/364763.
  • 38. Al-Harahsheh M, Shawabkeh R, Batiha M, Al-Harahsheh A, Al-Zboon K. Sulfur dioxide removal using natural zeolitic tuff. Fuel Process Tech. 2014;126:249-58. doi: 10.1016/j.fuproc.2014.04.025.
  • 39. Zhou X, Yi H, Tang X, Deng H, Liu H. Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber. Chem Eng J. 2012;200-202:399-404. doi: 10.1016/j.cej.2012.06.013.
  • 40. Vahdat Parast Z, Asilian H, Jonidi Jafari A. Adsorption of xylene from air by natural Iranian zeolite. Health Scope. 2014;3(3). doi: 10.17795/jhealthscope-17528.
  • 41. Mofidi A, Asilian H, Jonidi Jafari A. Adsorption of volatile organic compounds on fluidized activated carbon bed. Health Scope. 2013;2(2):84-9. doi: 10.17795/jhealthscope-9833.
  • 42. Zhang T, Li J, Yu S, Wang Y. Preparation and characterization of a new desulfurizer and its performance on removal of SO2. J Geosci Environ Protect. 2014;2(2):68-76. doi: 10.4236/gep.2014.22011.
  • 43. Bahiraei A, Afkhami A, Madrakian T, Gheitaran R. Preparation and characterization of γ-Fe2O3 nanoparticles and investigation of its adsorption performance for sulfide, sulfite and thiosulfate from aqueous solutions using ultrasonic assisted method: Modeling and optimization. Ultrason Sonochem. 2018;40:1049-58. doi: 10.1016/j.ultsonch.2017.08.035.
  • 44. Hernandez MA, Corona L, Gonzalez AI, Rojas F, Lara VH, Silva F. Quantitative study of the adsorption of aromatic hydrocarbons (benzene, toluene, and p-xylene) on dealuminated clinoptilolites. Ind Eng Chem Res. 2005;44(9):2908-16. doi: 10.1021/ie049276w.
  • 45. Malakootian M, Nori Sepehr M, Bahraini S, Zarrabi M. [Capacity of natural and modified zeolite with cationic surfactant in removal of antibiotic tetracycline from aqueous solutions]. Koomesh. 2016;17(3):779-88. Persian.
  • 46. Henn KW, Waddill DW. Utilization of nanoscale zero-valent iron for source remediation—A case study. Remed J. 2006;16(2):57-77. doi: 10.1002/rem.20081.
  • 47. Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L. Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Separ Purif Tech. 2009;68(3):312-9. doi: 10.1016/j.seppur.2009.05.020.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments