Removal of Pyrene from Soil Using Phytobioremediation (Sorghum Bicolor-Pseudomonas)

Authors Information
Article Notes and Dates
To Cite : Rostami S, Azhdarpoor A, Samaei M R. Removal of Pyrene from Soil Using Phytobioremediation (Sorghum Bicolor-Pseudomonas), Health Scope. 2017 ;6(4):e62153. doi: 10.5812/jhealthscope.62153.
Copyright: Copyright © 2017, Journal of Health Scope. .
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut. 2004;130(3):465-76. doi: 10.1016/j.envpol.2003.09.031. [PubMed: 15182977].
  • 2. Mohan SV, Kisa T/, Ohkuma T, Kanaly RA, Shimizu Y. Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev. Environ. Sci. Biotechnol. 2006;5(4):347–74.
  • 3. Hoseini M, Yunesian M, Nabizadeh R, Yaghmaeian K, Ahmadkhaniha R, Rastkari N, et al. Characterization and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric Particulate of Tehran, Iran. Environ Sci Pollut Res Int. 2016;23(2):1820-32. doi: 10.1007/s11356-015-5355-0. [PubMed: 26400241].
  • 4. Yong-Dae K, Todoroki H, Oyama T, Isse T, Matsumoto A, Yamaguchi T, et al. Identification of cytochrome P450 isoforms involved in 1-hydroxylation of pyrene. Environ. Res. 2004;94(3):262-6.
  • 5. Thompson OA, Wolf DC, Mattice JD, Thoma GJ. Influence of nitrogen addition and plant root parameters on phytoremediation of pyrene-contaminated soil. Water Air Soil Pollut. 2008;189(1-4):37–47.
  • 6. Song Q, Li J, Zeng X. Minimizing the increasing solid waste through zero waste strategy. J Clean Prod. 2015;104:199-210.
  • 7. Shabani A, Ghoamalizadeh Ahangar A. Predicting soil sorption coefficients of phenanthrene using a neural network model. Health. Scope. 2016;5(4).
  • 8. Alani R, Olayinka K, Alo B. Studies on persistent organic pollutants (POPs) in the Lagos Lagoon 1: occurrence and levels of polycyclic aromatic hydrocarbons (PAHs) in surface waters of the lagoon. J. Emerg. Trends Eng. Appl. Sci. 2013;4(6):811-8.
  • 9. Gao Y, Zhu L. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere. 2004;55(9):1169-78. doi: 10.1016/j.chemosphere.2004.01.037. [PubMed: 15081757].
  • 10. Liu R, Xiao N, Wei S, Zhao L, An J. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Sci Total Environ. 2014;473-474:350-8. doi: 10.1016/j.scitotenv.2013.12.027. [PubMed: 24374595].
  • 11. Alkorta I, Garbisu C. Phytoremediation of organic contaminants in soils. Bioresour Technol. 2001;79(3):273-6. [PubMed: 11499581].
  • 12. Sheng XF, Gong JX. Increased degradation of phenanthrene in soil by Pseudomonas sp. GF3 in the presence of wheat. Soil Biol. Biochem. 2006;38(9):2587-92.
  • 13. Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, et al. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol. 2001;67(6):2469-75. doi: 10.1128/AEM.67.6.2469-2475.2001. [PubMed: 11375152].
  • 14. Johnson DL, Anderson DR, McGrath SP. Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol. Biochem. 2005;37(12):2334-6.
  • 15. Aprill W, Sims RC. Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere. 1990;20(1-2):253-65.
  • 16. Glick BR. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv. 2010;28(3):367-74. doi: 10.1016/j.biotechadv.2010.02.001. [PubMed: 20149857].
  • 17. Dehghani M, Taatizadeh SB, Samaei MR. Biodegradation of n-hexadecane in acinetobacter radioresistens liquid culture. Health Scope. 2013. Health. Scope. 2013;2(3):162-7.
  • 18. D'Orazio V, Ghanem A, Senesi N. Phytoremediation of pyrene contaminated soils by different plant species. Soil Air Water. 2013;41(4):377–82.
  • 19. Rostami S, Azhdarpoor A, Rostami M, Samaei MR. The effects of simultaneous application of plant growth regulators and bioaugmentation on improvement of phytoremediation of pyrene contaminated soils. Chemosphere. 2016;161:219-23. doi: 10.1016/j.chemosphere.2016.07.026. [PubMed: 27434251].
  • 20. Cheema SA, Khan MI, Tang X, Zhang C, Shen C, Malik Z, et al. Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J Hazard Mater. 2009;166(2-3):1226-31. doi: 10.1016/j.jhazmat.2008.12.027. [PubMed: 19150175].
  • 21. Jorfi S, Rezaee A, Moheb-Ali GA, Jaafarzadeh NA. Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles. J Environ Health Sci Eng. 2013;11(1):17. doi: 10.1186/2052-336X-11-17. [PubMed: 24499620].
  • 22. Tam NF, Wong YS. Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons. Mar Pollut Bull. 2008;57(6-12):716-26. doi: 10.1016/j.marpolbul.2008.02.029. [PubMed: 18374368].
  • 23. Glick BR. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv. 2003;21(5):383-93. [PubMed: 14499121].
  • 24. Huesemann MH, Hausmann TS, Fortman TJ, Thom RM, Cullinan V. In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass (Zostera marina). Ecol. Eng. 2009;35(10):1395-404.
  • 25. Cheema SA, Imran Khan M, Shen C, Tang X, Farooq M, Chen L, et al. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater. 2010;177(1-3):384-9. doi: 10.1016/j.jhazmat.2009.12.044. [PubMed: 20079966].
  • 26. Muratova A, Golubev S, Wittenmayer L, Dmitrieva T, Bondarenkova A, Hirche F. Effect of the polycyclic aromatic hydrocarbon phenanthrene on root exudation of Sorghum bicolor (L.) Moench. Environ Exp Bot. 2009;66(3):514-21.
  • 27. Kaimi E, Mukaidani T, Miyoshi S, Tamaki M. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ Exp Bot. Environ Exp Bot. 2006;55(1):110-9.
  • 28. Xu SY, Chen YX, Wu WX, Wang KX, Lin Q, Liang XQ. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci Total Environ. 2006;363(1-3):206-15. doi: 10.1016/j.scitotenv.2005.05.030. [PubMed: 15985280].
  • 29. Binet P, Portal J, Leyval C. Dissipation of 3–6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol. Biochem. 2000;32(14):2011-7.
  • 30. Reilley KA, Banks MK, Schwab AP. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual. 1996;25(2):212-9.
  • 31. Rentz JA, Alvarez PJ, Schnoor JL. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environ Pollut. 2005;136(3):477-84. doi: 10.1016/j.envpol.2004.12.034. [PubMed: 15862401].
  • 32. Shim H, Chauhan S, Ryoo D, Bowers K, Thomas SM, Canada KA, et al. Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria. Appl Environ Microbiol. 2000;66(11):4673-8. [PubMed: 11055909].
  • 33. Arshad M, Saleem M, Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol. 2007;25(8):356-62. doi: 10.1016/j.tibtech.2007.05.005. [PubMed: 17573137].
  • 34. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM. Responses of three grass species to creosote during phytoremediation. Environ Pollut. 2004;130(3):453-63. doi: 10.1016/j.envpol.2003.12.018. [PubMed: 15182976].
  • 35. Liste HH, Prutz I. Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere. 2006;62(9):1411-20. doi: 10.1016/j.chemosphere.2005.05.018. [PubMed: 15996713].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiaion Alert via Google Reader

Cited By: