Health Scope

Published by: Kowsar

Simulation of Climate Change Impact on Emergency Medical Services Clients Caused by Air Pollution

Hamed Mohammadi 1 , 2 , Ali Ardalan 2 , * , Alireza Massah Bavani 3 , ** , Kazem Naddafi 4 and Mohammad Taghi Talebian 5
Authors Information
1 Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
2 Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
3 Department of Irrigation and Drainage Engineering, College of Abouraihan, University of Tehran, Tehran, IR Iran
4 Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research (IER), Tehran, IR Iran
5 Department of Emergency Medicine, Imam Khomeini Hospital; Tehran University of Medical Sciences, Tehran, IR Iran
Corresponding Authors:
Article information
  • Health Scope: May 2018, 7 (2); e57786
  • Published Online: May 27, 2018
  • Article Type: Research Article
  • Received: July 8, 2017
  • Revised: October 8, 2017
  • Accepted: October 14, 2017
  • DOI: 10.5812/jhealthscope.57786

To Cite: Mohammadi H, Ardalan A, Massah Bavani A, Naddafi K, Talebian M T. et al. Simulation of Climate Change Impact on Emergency Medical Services Clients Caused by Air Pollution, Health Scope. 2018 ;7(2):e57786. doi: 10.5812/jhealthscope.57786.

Abstract
Copyright © 2018, Journal of Health Scope. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnote
References
  • 1. Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, et al. Health and climate change: policy responses to protect public health. Lancet. 2015;386(10006):1861-914. doi: 10.1016/S0140-6736(15)60854-6. [PubMed: 26111439].
  • 2. Jacob DJ, Winner DA. Effect of climate change on air quality. Atmospher Environ. 2009;43(1):51-63. doi: 10.1016/j.atmosenv.2008.09.051.
  • 3. Vardoulakis S, Heaviside C. Health effects of climate change in the UK 2012. London: Health Protection Agency; 2012.
  • 4. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature. 2005;438(7066):310-7. doi: 10.1038/nature04188. [PubMed: 16292302].
  • 5. Rice MB, Thurston GD, Balmes JR, Pinkerton KE. Climate change. A global threat to cardiopulmonary health. Am J Respir Crit Care Med. 2014;189(5):512-9. doi: 10.1164/rccm.201310-1924PP. [PubMed: 24400619]. [PubMed Central: PMC3977715].
  • 6. Vanos JK, Cakmak S, Kalkstein LS, Yagouti A. Association of weather and air pollution interactions on daily mortality in 12 Canadian cities. Air Qual Atmos Health. 2015;8(3):307-20. doi: 10.1007/s11869-014-0266-7. [PubMed: 26052369]. [PubMed Central: PMC4449933].
  • 7. Seaman N. Meteorological modeling for air-quality assessments. Atmospher Environ. 2000;34(12-14):2231-59. doi: 10.1016/s1352-2310(99)00466-5.
  • 8. Madaniyazi L, Guo Y, Yu W, Tong S. Projecting future air pollution-related mortality under a changing climate: progress, uncertainties and research needs. Environ Int. 2015;75:21-32. doi: 10.1016/j.envint.2014.10.018. [PubMed: 25461412].
  • 9. Sá E, Martins H, Ferreira J, Marta-Almeida M, Rocha A, Carvalho A, et al. Climate change and pollutant emissions impacts on air quality in 2050 over Portugal. Atmospher Environ. 2016;131:209-24. doi: 10.1016/j.atmosenv.2016.01.040.
  • 10. McMichael AJ. Climate change and human health : risks and responses. Geneva: World Health Organization; 2003. 322 p.
  • 11. Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, et al. Managing the health effects of climate change: Lancet and University College London Institute for Global Health Commission. Lancet. 2009;373(9676):1693-733. doi: 10.1016/S0140-6736(09)60935-1. [PubMed: 19447250].
  • 12. Gao Y, Fu JS, Drake JB, Lamarque JF, Liu Y. The impact of emission and climate change on ozone in the United States under representative concentration pathways (RCPs). Atmospher Chem Phys. 2013;13(18):9607-21. doi: 10.5194/acp-13-9607-2013.
  • 13. Sun J, Fu JS, Huang K, Gao Y. Estimation of future PM2.5- and ozone-related mortality over the continental United States in a changing climate: An application of high-resolution dynamical downscaling technique. J Air Waste Manag Assoc. 2015;65(5):611-23. doi: 10.1080/10962247.2015.1033068. [PubMed: 25947319].
  • 14. Penrod A, Zhang Y, Wang K, Wu SY, Leung LR. Impacts of future climate and emission changes on U.S. air quality. Atmospher Environ. 2014;89:533-47. doi: 10.1016/j.atmosenv.2014.01.001.
  • 15. Karlsson PE, Klingberg J, Engardt M, Andersson C, Langner J, Karlsson GP, et al. Past, present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe. Sci Total Environ. 2017;576:22-35. doi: 10.1016/j.scitotenv.2016.10.061. [PubMed: 27780097].
  • 16. Szyszkowicz M, Kousha T. Air Pollution and Emergency Department Visits for Headache and Migraine. Health Scope. 2016;5(3). doi: 10.17795/jhealthscope-35122.
  • 17. Graham W. The Beginner's Guide to Representative Concentration Pathways. 2013. Available from: http://gpwayne.wordpress.com.
  • 18. IPCC-TGICA. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2013.
  • 19. Semenov MA, Stratonovitch P. Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Res. 2010;41:1-14. doi: 10.3354/cr00836.
  • 20. Nourmoradi H, Omidi Khaniabadi Y, Goudarzi G, Daryanoosh SM, Khoshgoftar M, Omidi F, et al. Air Quality and Health Risks Associated With Exposure to Particulate Matter: A Cross-Sectional Study in Khorramabad, Iran. Health Scope. 2016;5(2). doi: 10.17795/jhealthscope-31766.
  • 21. Mohammadi A, Azhdarpoor A, Shahsavani A, Tabatabaee H. Health Impacts of Exposure to PM10 on Inhabitants of Shiraz, Iran. Health Scope. 2015;4(4). doi: 10.17795/jhealthscope-31015.
  • 22. Ardalan A, Mohammadi H, Massah A, Bavani K, Talebian MT. Preprocessing and Optimization of Smooth Data-driven Model for Emergency Conditions Against Air Pollution. Ambient Sci. 2016;3(2):22-9.
  • 23. Shabani A, Gholamalizadeh Ahangar A. Predicting Soil Sorption Coefficients of Phenanthrene Using a Neural Network Model. Health Scope. 2016;5(4). doi: 10.17795/jhealthscope-29634.
  • 24. Naddafi K, Hassanvand MS, Yunesian M, Momeniha F, Nabizadeh R, Faridi S, et al. Health impact assessment of air pollution in megacity of Tehran, Iran. Iranian J Environ Health Sci Eng. 2012;9(1):28. doi: 10.1186/1735-2746-9-28. [PubMed: 23369114]. [PubMed Central: PMC3561072].
  • 25. Carter TR, Hulme M, Lal M. General guidelines on the use of scenario data for climate impact and adaptation assessment. 2007.
  • 26. Emori S, Taylor K, Hewitson B, Zermoglio F, Jucke M, Martina LMS. CMIP5 data provided at the IPCC data distribution centre. IPCC Task group on data and scenario support for impacts and climate analysis (TGICA). 2016.
  • 27. Inal F. Artificial Neural Network Prediction of Tropospheric Ozone Concentrations in Istanbul, Turkey. Clean Soil Air Water. 2010;38(10):897-908. doi: 10.1002/clen.201000138.
  • 28. Moustris KP, Ziomas IC, Paliatsos AG. 3-Day-Ahead Forecasting of Regional Pollution Index for the Pollutants NO2, CO, SO2, and O3 Using Artificial Neural Networks in Athens, Greece. Water Air Soil Pollut. 2009;209(1-4):29-43. doi: 10.1007/s11270-009-0179-5.
  • 29. Pires JCM, Goncalves B, Azevedo FG, Carneiro AP, Rego N, Assembleia AJB, et al. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting. Environ Sci Pollut Res. 2012;19(8):3228-34.
  • 30. Pires JC, Souza A, Pavao HG, Martins FG. Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction. Environ Sci Pollut Res Int. 2014;21(17):10550-9. doi: 10.1007/s11356-014-2977-6. [PubMed: 24854500].
  • 31. Solaiman TA, Coulibaly P, Kanaroglou P. Ground-level ozone forecasting using data-driven methods. Air Qual Atmosphere Health. 2009;1(4):179-93. doi: 10.1007/s11869-008-0023-x.
  • 32. Sepehrnia N, Memarianfard L, Moosavi AA, Bachmann J, Guggenberger G, Rezanezhad F. Bacterial mobilization and transport through manure enriched soils: Experiment and modeling. J Environ Manage. 2017;201:388-96. doi: 10.1016/j.jenvman.2017.07.009. [PubMed: 28697382].
  • 33. Gallo C, Conto F, Fiore M. A Neural Network Model for Forecasting CO2 Emission. Agris Line Papers Econ Inform. 2014;6(2):31.
  • 34. Tai APK, Mickley LJ, Jacob DJ. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospher Environ. 2010;44(32):3976-84. doi: 10.1016/j.atmosenv.2010.06.060.
  • 35. Chang HH, Hao H, Sarnat SE. A Statistical Modeling Framework for Projecting Future Ambient Ozone and its Health Impact due to Climate Change. Atmos Environ (1994). 2014;89:290-7. doi: 10.1016/j.atmosenv.2014.02.037. [PubMed: 24764746]. [PubMed Central: PMC3994127].
  • 36. Wang W, Lu W, Wang X, Leung AYT. Prediction of maximum daily ozone level using combined neural network and statistical characteristics. Environ Int. 2003;29(5):555-62. doi: 10.1016/s0160-4120(03)00013-8.
  • 37. Bibi H, Nutman A, Shoseyov D, Shalom M, Peled R, Kivity S, et al. Prediction of emergency department visits for respiratory symptoms using an artificial neural network. Chest. 2002;122(5):1627-32. [PubMed: 12426263].
  • 38. Thomas S, Jacko RB. Model for forecasting expressway fine particulate matter and carbon monoxide concentration: application of regression and neural network models. J Air Waste Manag Assoc. 2007;57(4):480-8. [PubMed: 17458467].
  • 39. Diaz-Robles LA, Ortega JC, Fu JS, Reed GD, Chow JC, Watson JG, et al. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmospher Environ. 2008;42(35):8331-40. doi: 10.1016/j.atmosenv.2008.07.020.
  • 40. Noori R, Karbassi AR, Moghaddamnia A, Han D, Zokaei-Ashtiani MH, Farokhnia A, et al. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J Hydrol. 2011;401(3-4):177-89. doi: 10.1016/j.jhydrol.2011.02.021.
  • 41. Grivas G, Chaloulakou A. Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmospher Environ. 2006;40(7):1216-29. doi: 10.1016/j.atmosenv.2005.10.036.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments