Health Scope

Published by: Kowsar

Destruction of Escherichia coli and Enterococcus faecalis using Low Frequency Ultrasound Technology: A Response Surface Methodology

Mitra Gholami 1 , 2 , * , Roya Mirzaei 1 , Rashin Mohammadi 3 , Zohre Zarghampour 4 and Akhtar Afshari 1
Authors Information
1 Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR Iran
2 Occupational Health Research Center, Iran University of Medical Sciences, Tehran, IR Iran
3 Department of Cellular-Molecular Biology, College of Science, University of Tehran, Tehran, IR Iran
4 Tehran Water and Wastewater Company, Tehran, IR Iran
Article information
  • Health Scope: February 24, 2014, 3 (1); e14213
  • Published Online: February 17, 2014
  • Article Type: Research Article
  • Received: August 14, 2013
  • Revised: October 19, 2013
  • Accepted: October 20, 2013
  • DOI: 10.17795/jhealthscope-14213

To Cite: Gholami M, Mirzaei R, Mohammadi R, Zarghampour Z, Afshari A. et al. Destruction of Escherichia coli and Enterococcus faecalis using Low Frequency Ultrasound Technology: A Response Surface Methodology, Health Scope. 2014 ;3(1):e14213. doi: 10.17795/jhealthscope-14213.

Abstract
Copyright © 2014, Health Promotion Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Mason TJ. Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. Ultrason Sonochem. 2003; 10(4-5): 175-9[DOI][PubMed]
  • 2. Cui X, Talley JW, Liu G, Larson SL. Effects of primary sludge particulate (PSP) entrapment on ultrasonic (20 kHz) disinfection of Escherichia coli. Water Res. 2011; 45(11): 3300-8[DOI][PubMed]
  • 3. Joyce E, Phull SS, Lorimer JP, Mason TJ. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrason Sonochem. 2003; 10(6): 315-8[DOI][PubMed]
  • 4. Declerck P, Vanysacker L, Hulsmans A, Lambert N, Liers S, Ollevier F. Evaluation of power ultrasound for disinfection of both Legionella pneumophila and its environmental host Acanthamoeba castellanii. Water Res. 2010; 44(3): 703-10[DOI][PubMed]
  • 5. Bermúdez-Aguirre D, Corradini MG. Inactivation kinetics of <italic>Salmonella</italic> spp. under thermal and emerging treatments: A review. Food Res Int. 2012; 45(2): 700-12
  • 6. Koda S, Miyamoto M, Toma M, Matsuoka T, Maebayashi M. Inactivation of Escherichia coli and Streptococcus mutans by ultrasound at 500kHz. Ultrason Sonochem. 2009; 16(5): 655-9[DOI][PubMed]
  • 7. Noci F, Walkling-Ribeiro M, Cronin DA, Morgan DJ, Lyng JG. Effect of thermosonication, pulsed electric field and their combination on inactivation of Listeria innocua in milk. Int Dairy J. 2009; 19(1): 30-35[DOI]
  • 8. Al Bsoul A, Magnin JP, Commenges-Bernole N, Gondrexon N, Willison J, Petrier C. Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain (6PY1). Ultrason Sonochem. 2010; 17(1): 106-10[DOI][PubMed]
  • 9. Doosti MR, Kargar R, Sayadi MH. Water treatment using ultrasonic assistance: a review. P Int Acad Ecol Envi Sci. 2012; 2(2): 96-110
  • 10. Antoniadis A, Poulios I, Nikolakaki E, Mantzavinos D. Sonochemical disinfection of municipal wastewater. J Hazard Mater. 2007; 146(3): 492-5[DOI][PubMed]
  • 11. Furuta M, Yamaguchi M, Tsukamoto T, Yim B, Stavarache CE, Hasiba K, et al. Inactivation of Escherichia coli by ultrasonic irradiation. Ultrason Sonochem. 2004; 11(2): 57-60[DOI][PubMed]
  • 12. Ugarte‐Romero E, Feng H, Martin SE, Cadwallader KR, Robinson SJ. Inactivation of Escherichia coli with power ultrasound in apple cider. J Food Sci. 2006; 71(2)
  • 13. Hughes DE, Nyborg WL. Cell disruption by ultrasound. Science. 1962; 138(3537): 108-14[PubMed]
  • 14. Allison DG, D'Emanuele A, Eginton P, Williams AR. The effect of ultrasound on Escherichia coli viability. J Basic Microbiol. 1996; 36(1): 3-11[PubMed]
  • 15. Naddeo V, Landi M, Belgiorno V, Napoli RM. Wastewater disinfection by combination of ultrasound and ultraviolet irradiation. J Hazard Mater. 2009; 168(2-3): 925-9[DOI][PubMed]
  • 16. Hulsmans A, Joris K, Lambert N, Rediers H, Declerck P, Delaedt Y, et al. Evaluation of process parameters of ultrasonic treatment of bacterial suspensions in a pilot scale water disinfection system. Ultrason Sonochem. 2010; 17(6): 1004-9[DOI][PubMed]
  • 17. Dehghani MH. Effectiveness of Ultrasound on the Destruction of&lt; i&gt; E. coli&lt;/i&gt;. Am J Env Sci. 2005; 1(3): 187
  • 18. Kalantar EMA, Khosravi M, Mahmodi S. Evaluation of ultrasoundwaves effect on antibiotic resistance pseudomonas aeruginosa and staphylococcus aureus isolated from hospital and their comparison with standard species. Iran J Health Env. 2010; 3(3)
  • 19. Tsukamoto I, Yim B, Stavarache CE, Furuta M, Hashiba K, Maeda Y. Inactivation of Saccharomyces cerevisiae by ultrasonic irradiation. Ultrason Sonochem. 2004; 11(2): 61-5[DOI][PubMed]
  • 20. Dehghani MH, Mahvi AH, Jahed GR, Sheikhi R. Investigation and evaluation of ultrasound reactor for reduction of fungi from sewage. J Zhejiang Univ Sci B. 2007; 8(7): 493-7[DOI][PubMed]
  • 21. Su X, Zivanovic S, D'Souza DH. Inactivation of human enteric virus surrogates by high-intensity ultrasound. Foodborne Pathog Dis. 2010; 7(9): 1055-61[DOI][PubMed]
  • 22. Piyasena P, Mohareb E, McKellar RC. Inactivation of microbes using ultrasound: a review. Int J Food Microbiol. 2003; 87(3): 207-16[PubMed]
  • 23. Tiehm A, Nickel K, Neis U. The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Sci Technol. 1997; 36(11): 121-8[DOI]
  • 24. McFarland J. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J Am Med Ass. 1907; 49(14): 1176-1178
  • 25. Kwak TY, Kim NH, Rhee MS. Response surface methodology-based optimization of decontamination conditions for Escherichia coli O157:H7 and Salmonella Typhimurium on fresh-cut celery using thermoultrasound and calcium propionate. Int J Food Microbiol. 2011; 150(2-3): 128-35[DOI][PubMed]
  • 26. Sun Y, Li T, Yan J, Liu J. Technology optimization for polysaccharides (POP) extraction from the fruiting bodies of Pleurotus ostreatus by Box–Behnken statistical design. Carbohyd P. 2010; 80(1): 242-247[DOI]
  • 27. Baş D, Boyacı İH. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering. 2007; 78(3): 836-45
  • 28. Gómez-López MD, Bayo J, García-Cascales MS, Angosto JM. Decision support in disinfection technologies for treated wastewater reuse. J Cleaner Prod. 2009; 17(16): 1504-11[DOI]
  • 29. Toor R, Mohseni M. UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere. 2007; 66(11): 2087-95[DOI][PubMed]
  • 30. Lee H, Zhou B, Liang W, Feng H, Martin SE. Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial responses and kinetics modeling. J Food Eng. 2009; 93(3): 354-64
  • 31. Tsukamoto I, Constantinoiu E, Furuta M, Nishimura R, Maeda Y. Inactivation effect of sonication and chlorination on Saccharomyces cerevisiae. Calorimetric analysis. Ultrason Sonochem. 2004; 11(3-4): 167-72[DOI][PubMed]
  • 32. Ince NH, Tezcanli G, Belen RK, Apikyan İG. Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl Catal B: Env. 2001; 29(3): 167-76[DOI]
  • 33. Doosti MR, Kargar R, Sayadi MH. Water treatment using ultrasonic assistance: A review. P Int Acad Ecology and Env Sci. 2012; 2(2): 96-110
  • 34. Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advan Env Res. 2004; 8(3–4): 501-51[DOI]
  • 35. Goncharuk VV, Malyarenko VV, Yaremenko VA. Use of ultrasound in water treatment. J Water Chem Technol. 2008; 30(3): 137-50
  • 36. Mahvi AH. Application of ultrasonic technology for water and wastewater treatment. Iran J Public Health. 2009; 38(2)
  • 37. Mason TJ, Joyce E, Phull SS, Lorimer JP. Potential uses of ultrasound in the biological decontamination of water. Ultrason Sonochem. 2003; 10(6): 319-23[DOI][PubMed]
  • 38. Broekman S, Pohlmann O, Beardwood ES, de Meulenaer EC. Ultrasonic treatment for microbiological control of water systems. Ultrason Sonochem. 2010; 17(6): 1041-8[DOI][PubMed]
  • 39. Butz P, Tauscher B. Emerging technologies: chemical aspects. Food Res Int. 2002; 35(2–3): 279-84[DOI]
  • 40. Umar M, Aziz HA, Yusoff MS. Assessing the chlorine disinfection of landfill leachate and optimization by response surface methodology (RSM). Desalination. 2011; 274(1–3): 278-83[DOI]
  • 41. Munoz A, Palgan I, Noci F, Morgan DJ, Cronin DA, Whyte P, et al. Combinations of High Intensity Light Pulses and Thermosonication for the inactivation of Escherichia coli in orange juice. Food Microbiol. 2011; 28(6): 1200-4[DOI][PubMed]
  • 42. Sostaric JZ, Weavers LK. Advancement of high power ultrasound technology for the destruction of surface active waterborne contaminants. Ultrason Sonochem. 2010; 17(6): 1021-6[DOI][PubMed]
  • 43. Marques LLM, Buzato JB, Celligoi MAPC. Effect of raffinose and ultrasound pulses on invertase release by free and immobilized Saccharomyces cerevisiae in loofa (Luffa cylindrica) sponge. Braz Arch Biol Technol. 2006; 49(6): 873-80
  • 44. Lanchun S, Bochu W, Liancai Z, Jie L, Yanhong Y, Chuanren D. The influence of low-intensity ultrasonic on some physiological characteristics of Saccharomyces cerevisiae. Colloids Surfaces B: Biointerfaces. 2003; 30(1–2): 61-6[DOI]
  • 45. Jean D, Chang B, Liao G, Tsou G, Lee D. Reduction of microbial density level in sewage sludge through pH adjustment and ultrasonic treatment. Water Sci Technol. 2000; 42(9): 97-102
  • 46. Gordon AG. Beneficial effects of ultrasound on plants—a review. Ultrasonics. 1971; 9(2): 81-4[DOI]
  • 47. Kuldiloke J, Eshtiaghi MN. Application of non-thermal processing for preservation of orange juice. KMITL Sci Technol J. 2008; 8(2): 64-74
  • 48. Guerrero S, López-Malo A, Alzamora SM. Effect of ultrasound on the survival of Saccharomyces cerevisiae: influence of temperature, pH and amplitude. Innovative Food Sci Emerg Technol. 2001; 2(1): 31-9[DOI]
  • 49. Raso G, D'Amore M, Formisani B, Lignola PG. The influence of temperature on the properties of the particulate phase at incipient fluidization. Powder Technol. 1992; 72(1): 71-76[DOI]
  • 50. Foladori P, Laura B, Gianni A, Giuliano Z. Effects of sonication on bacteria viability in wastewater treatment plants evaluated by flow cytometry--fecal indicators, wastewater and activated sludge. Water Res. 2007; 41(1): 235-43[DOI][PubMed]
  • 51. Dadjour MF, Ogino C, Matsumura S, Shimizu N. Kinetics of disinfection of Escherichia coli by catalytic ultrasonic irradiation with TiO2. Biochem Eng J. 2005; 25(3): 243-8[DOI]
  • 52. Bigelow TA, Northagen T, Hill TM, Sailer FC. The destruction of Escherichia coli biofilms using high-intensity focused ultrasound. Ultrasound Med Biol. 2009; 35(6): 1026-31[DOI][PubMed]
  • 53. Arrojo S, Benito Y, Tarifa AM. A parametrical study of disinfection with hydrodynamic cavitation. Ultrason Sonochem. 2008; 15(5): 903-8[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments