Health Scope

Published by: Kowsar

Application of Heterogeneous Catalytic Ozonation Process with Magnesium Oxide Nanoparticles for Toluene Degradation in Aqueous Environments

Leili Mohammadi 1 , Edris Bazrafshan 1 , * , Meissam Noroozifar 2 and Alireza Ansari-Moghaddam 1
Authors Information
1 Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
2 Analytical Research Laboratory, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, IR Iran
Article information
  • Health Scope: November 01, 2016, 5 (4); e40439
  • Published Online: September 27, 2016
  • Article Type: Research Article
  • Received: July 1, 2016
  • Revised: August 25, 2016
  • Accepted: September 16, 2016
  • DOI: 10.17795/jhealthscope-40439

To Cite: Mohammadi L, Bazrafshan E, Noroozifar M, Ansari-Moghaddam A. Application of Heterogeneous Catalytic Ozonation Process with Magnesium Oxide Nanoparticles for Toluene Degradation in Aqueous Environments, Health Scope. 2016 ; 5(4):e40439. doi: 10.17795/jhealthscope-40439.

Copyright © 2016, Health Promotion Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Introduction
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Zhao Z, Wang S, Yang Y, Li X, Li J, Li Z. Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1). Chem Eng J. 2015; 259: 79-89[DOI]
  • 2. Hinojosa-Reyes M, Arriaga S, Diaz-Torres LA, Rodríguez-González V. Gas-phase photocatalytic decomposition of ethylbenzene over perlite granules coated with indium doped TiO2. Chem Eng J. 2013; 224: 106-13[DOI]
  • 3. Niri VH, Bragg L, Pawliszyn J. Fast analysis of volatile organic compounds and disinfection by-products in drinking water using solid-phase microextraction-gas chromatography/time-of-flight mass spectrometry. J Chromatogr A. 2008; 1201(2): 222-7[DOI][PubMed]
  • 4. Murata M, Tsujikawa M, Kawanishi S. Oxidative DNA damage by minor metabolites of toluene may lead to carcinogenesis and reproductive dysfunction. Biochem Biophys Res Commun. 1999; 261(2): 478-83[DOI][PubMed]
  • 5. Jo MS, Rene ER, Kim SH, Park HS. An analysis of synergistic and antagonistic behavior during BTEX removal in batch system using response surface methodology. J Hazard Mater. 2008; 152(3): 1276-84[DOI][PubMed]
  • 6. Barbee GC, Brown KW. Movement of xylene through unsaturated soils following simulated spills. Water, Air, and Soil Pollution. 1986; 29(3): 321-31[DOI]
  • 7. Choi EJ, Jin HM, Lee SH, Math RK, Madsen EL, Jeon CO. Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol. 2013; 79(2): 663-71[DOI][PubMed]
  • 8. Guidelines for drinking-water quality World Health Organization, Distribution and Sales. 2004;
  • 9. Nadim F, Hoag GE, Liu S, Carley RJ, Zack P. Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview. J Petrol Sci Eng. 2000; 26(1-4): 169-78[DOI]
  • 10. Seifi L, Torabian A, Kazemian H, Bidhendi G, Azimi AA, Nazmara S, et al. Adsorption of BTEX on Surfactant Modified Granulated Natural Zeolite Nanoparticles: Parameters Optimizing by Applying Taguchi Experimental Design Method. CLEAN - Soil, Air, Water. 2011; 39(10): 939-48[DOI]
  • 11. Zhan S, Yang Y, Gao X, Yu H, Yang S, Zhu D, et al. Rapid degradation of toxic toluene using novel mesoporous SiO2 doped TiO2 nanofibers. Catalysis Today. 2014; 225: 10-7[DOI]
  • 12. Solsona B, García T, Sanchis R, Soriano MD, Moreno M, Rodríguez-Castellón E, et al. Total oxidation of VOCs on mesoporous iron oxide catalysts: Soft chemistry route versus hard template method. Chem Eng J. 2016; 290: 273-81[DOI]
  • 13. Deng Y, Zhao R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Current Pollution Reports. 2015; 1(3): 167-76[DOI]
  • 14. Kutschera K, Bornick H, Worch E. Photoinitiated oxidation of geosmin and 2-methylisoborneol by irradiation with 254 nm and 185 nm UV light. Water Res. 2009; 43(8): 2224-32[DOI][PubMed]
  • 15. Kasprzyk-Hordern B. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental. 2003; 46(4): 639-69[DOI]
  • 16. Liotta LF, Gruttadauria M, Di Carlo G, Perrini G, Librando V. Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater. 2009; 162(2-3): 588-606[DOI][PubMed]
  • 17. Qi F, Xu B, Chen Z, Feng L, Zhang L, Sun D. Catalytic ozonation of 2-isopropyl-3-methoxypyrazine in water by γ-AlOOH and γ-Al2O3: Comparison of removal efficiency and mechanism. Chem Eng J. 2013; 219: 527-36[DOI]
  • 18. Zhao L, Ma J, Sun Z, Liu H. Influencing mechanism of temperature on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation. J Hazard Mater. 2009; 167(1-3): 1119-25[DOI][PubMed]
  • 19. Moussavi G, Khavanin A, Alizadeh R. The investigation of catalytic ozonation and integrated catalytic ozonation/biological processes for the removal of phenol from saline wastewaters. J Hazard Mater. 2009; 171(1-3): 175-81[DOI][PubMed]
  • 20. Zeng YF, Liu ZL, Qin ZZ. Decolorization of molasses fermentation wastewater by SnO(2)-catalyzed ozonation. J Hazard Mater. 2009; 162(2-3): 682-7[DOI][PubMed]
  • 21. Shahidi D, Roy R, Azzouz A. Advances in catalytic oxidation of organic pollutants – Prospects for thorough mineralization by natural clay catalysts. Applied Catalysis B: Environmental. 2015; 174-175: 277-92[DOI]
  • 22. Chen J, Tian S, Lu J, Xiong Y. Catalytic performance of MgO with different exposed crystal facets towards the ozonation of 4-chlorophenol. Applied Catalysis A: General. 2015; 506: 118-25[DOI]
  • 23. Xing S, Lu X, Liu J, Zhu L, Ma Z, Wu Y. Catalytic ozonation of sulfosalicylic acid over manganese oxide supported on mesoporous ceria. Chemosphere. 2016; 144: 7-12[DOI][PubMed]
  • 24. Wu CH, Kuo CY, Chang CL. Decolorization of C.I. Reactive Red 2 by catalytic ozonation processes. J Hazard Mater. 2008; 153(3): 1052-8[DOI][PubMed]
  • 25. Wang J, Lou Y, Xu C, Song S, Liu W. Magnetic lanthanide oxide catalysts: An application and comparison in the heterogeneous catalytic ozonation of diethyl phthalate in aqueous solution. Separat PurifiTech. 2016; 159: 57-67[DOI]
  • 26. Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental. 2010; 99(1-2): 27-42[DOI]
  • 27. Moussavi G, Mahmoudi M. Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals. Chem Eng J. 2009; 152(1): 1-7[DOI]
  • 28. Hammad Khan M, Jung JY. Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase. Chemosphere. 2008; 72(4): 690-6[DOI][PubMed]
  • 29. Dong Y, He K, Zhao B, Yin Y, Yin L, Zhang A. Catalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral brucite. Catalysis Communications. 2007; 8(11): 1599-603[DOI]
  • 30. He K, Dong YM, Li Z, Yin L, Zhang AM, Zheng YC. Catalytic ozonation of phenol in water with natural brucite and magnesia. J Hazard Mater. 2008; 159(2-3): 587-92[DOI][PubMed]
  • 31. Ma J, Sui M, Zhang T, Guan C. Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene. Water Res. 2005; 39(5): 779-86[DOI][PubMed]
  • 32. Ikhlaq A, Brown DR, Kasprzyk-Hordern B. Catalytic ozonation for the removal of organic contaminants in water on alumina. Applied Catalysis B: Environmental. 2015; 165: 408-18[DOI]
  • 33. Huang WJ, Fang GC, Wang CC. A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water. Colloid Surf A. 2005; 260: 45-51
  • 34. Gulková D, Šolcová O, Zdražil M. Preparation of MgO catalytic support in shaped mesoporous high surface area form. Microporous and Mesoporous Materials. 2004; 76(1-3): 137-49[DOI]
  • 35. Moussavi G, khavanin A, Alizadeh R. The integration of ozonation catalyzed with MgO nanocrystals and the biodegradation for the removal of phenol from saline wastewater. Applied Catalysis B: Environmental. 2010; 97(1-2): 160-7[DOI]
  • 36. Cadigan CA, Corpuz AR, Lin F, Caskey CM, Finch KBH, Wang X, et al. Nanoscale (111) faceted rock-salt metal oxides in catalysis. Catal Sci Technol. 2013; 3(4): 900-11[DOI]
  • 37. Gonen F, Aksu Z. Use of response surface methodology (RSM) in the evaluation of growth and copper(II) bioaccumulation properties of Candida utilis in molasses medium. J Hazard Mater. 2008; 154(1-3): 731-8[DOI][PubMed]
  • 38. Srinivasan SV, Murthy DV. Statistical optimization for decolorization of textile dyes using Trametes versicolor. J Hazard Mater. 2009; 165(1-3): 909-14[DOI][PubMed]
  • 39. Anupam K, Dutta S, Bhattacharjee C, Datta S. Adsorptive removal of chromium (VI) from aqueous solution over powdered activated carbon: Optimisation through response surface methodology. Chem Eng J. 2011; 173(1): 135-43[DOI]
  • 40. Segurola J, Allen NS, Edge M, Mahon AM. Design of eutectic photo initiator blends for UV/curable curable acrylated printing inks and coatings. Prog Org Coat. 1999; 37: 23-37
  • 41. Demim S, Drouiche N, Aouabed A, Benayad T, Couderchet M, Semsari S. Study of heavy metal removal from heavy metal mixture using the CCD method. J Ind Eng Chem. 2014; 20: 512-20
  • 42. Zheng Y, Wang A. . Removal of heavy metals using polyvinyl alcohol semi-IPN poly (acrylic acid)/tourmaline composite optimized with response surface methodology. Chem Eng J. 2010; 162: 186-93
  • 43. Nordin MY, Venkatesh VC, Sharif S, Elting S, Abdullah A. Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 104 steel. J Mater Process Technol. 2004; 145: 46-58[DOI]
  • 44. Xiao H, Xu Y, Yu M, Zhang Q. Enhanced mineralization of 2,4-dichlorophenol by ozone in the presence of trace permanganate: effect of pH. Environ Technol. 2010; 31(11): 1295-300[DOI][PubMed]
  • 45. Yan H, Lu P, Pan Z, Wang X, Zhang Q, Li L. Ce/SBA-15 as a heterogeneous ozonation catalyst for efficient mineralization of dimethyl phthalate. J Molecular Catalysis A: Chem. 2013; 377: 57-64[DOI]
  • 46. Yan H, Chen W, Liao G, Li X, Ma S, Li L. Activity assessment of direct synthesized Fe-SBA-15 for catalytic ozonation of oxalic acid. Separat Purifi Techno. 2016; 159: 1-6[DOI]
  • 47. Valdes H, Murillo FA, Manoli JA, Zaror CA. Heterogeneous catalytic ozonation of benzothiazole aqueous solution promoted by volcanic sand. J Hazard Mater. 2008; 153(3): 1036-42[DOI][PubMed]
  • 48. von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research. 2003; 37(7): 1443-67[DOI]
  • 49. Zhao L, Ma J, Sun Z, Zhai X. Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese. Applied Catalysis B: Environ. 2008; 83(3-4): 256-64[DOI]
  • 50. Asgari G, Faradmal J, Zolghadr Nasab H, Seidmohammadi A. Catalytic Potential of Nano-Magnesium Oxide on Degradation of Humic Acids From Aquatic Solutions. Avicenna J Environ Health Eng. 2014; 1(1)[DOI]
  • 51. Shahamat YD, Farzadkia M, Nasseri S, Mahvi AH, Gholami M, Esrafili A. Magnetic heterogeneous catalytic ozonation: a new removal method for phenol in industrial wastewater. J Environ Health Sci Eng. 2014; 12(1): 1
  • 52. Freshour AR, Mawhinney S, Bhattacharyya D. Two-phase ozonation of hazardous organics in single and multicomponent systems. Water Res. 1996; 30(9): 1949-58[DOI]
  • 53. Wu CH, Kuo CY, Chang CL. Homogeneous catalytic ozonation of C.I. Reactive Red 2 by metallic ions in a bubble column reactor. J Hazard Mater. 2008; 154(1-3): 748-55[DOI][PubMed]
  • 54. Faria PCC, Órfão JJM, Pereira MFR. Activated carbon catalytic ozonation of oxamic and oxalic acids. Applied Catalysis B: Environmental. 2008; 79(3): 237-43[DOI]
  • 55. Rosal R, Gonzalo MS, Rodríguez A, Perdigón-Melón J, García-Calvo E. Catalytic ozonation of atrazine and linuron on MnOx/Al2O3 and MnOx/SBA-15 in a fixed bed reactor. Chem Eng J. 2010; 165(3): 806-12[DOI]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments