Health Scope

Published by: Kowsar

Predicting Soil Sorption Coefficients of Phenanthrene Using a Neural Network Model

Asma Shabani 1 , * and Ahmad Gholamalizadeh Ahangar 1
Authors Information
1 Department of Soil Sciences, Faculty of Soil and Water, University of Zabol, Zabol, IR Iran
Article information
  • Health Scope: November 01, 2016, 5 (4); e29634
  • Published Online: June 29, 2016
  • Article Type: Research Article
  • Received: April 29, 2015
  • Revised: August 7, 2015
  • Accepted: August 26, 2015
  • DOI: 10.17795/jhealthscope-29634

To Cite: Shabani A, Gholamalizadeh Ahangar A. Predicting Soil Sorption Coefficients of Phenanthrene Using a Neural Network Model, Health Scope. 2016 ; 5(4):e29634. doi: 10.17795/jhealthscope-29634.

Copyright © 2016, Health Promotion Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Gachanja AN. Polycyclic aromatic hydrocarbons determination and environmental application in: Encyclopedia of Analytical Science. 2005;
  • 2. Awoyemi A. Understanding the adsorption of polycyclic aromatic hydrocarbons from aqueous phase onto activated carbon [Dissertation]. 2011;
  • 3. Gao Y, Zhu L. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere. 2004; 55(9): 1169-78[DOI][PubMed]
  • 4. Gao YZ, Zhu LZ. Phytoremediation for phenanthrene and pyrene contaminated soils. J Environ Sci (China). 2005; 17(1): 14-8[PubMed]
  • 5. Walters RW, Luthy RG. Equilibrium adsorption of polycyclic aromatic hydrocarbons from water onto activated carbon. Environ Sci Technol. 1984; 18(6): 395-403[DOI][PubMed]
  • 6. Manoli E, Samara C, Konstantinou I, Albanis T. Polycyclic aromatic hydrocarbons in the bulk precipitation and surface waters of Northern Greece. Chemosphere. 2000; 41(12): 1845-55[PubMed]
  • 7. Walker C. Organic pollutants: An Ecotoxicological Perspective. 2001; [DOI]
  • 8. Verschueren K. Handbook of Environmental Data on Organic Chemicals. 1985;
  • 9. Polycyclic aromatic hydrocarbons IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans 92. 2006;
  • 10. Liu X, Mao XM, Yang JG, Barry DA, Li L. Experiments and modelling of phenanthrene biodegradation in the aqueous phase by a mixed culture. J Environ Sci (China). 2006; 18(1): 147-53[PubMed]
  • 11. Wauchope RD, Yeh S, Linders JB, Kloskowski R, Tanaka K, Rubin B, et al. Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Manag Sci. 2002; 58(5): 419-45[DOI][PubMed]
  • 12. Kerle MI, Jenkins MP, Vogue PA. Understanding pesticide persistence and mobility for groundwater and surface water protection. EM 8561-E. 2007;
  • 13. Falamaki A. Artificial neural network application for predicting soil distribution coefficient of nickel. J Environ Radioact. 2013; 115: 6-12[DOI][PubMed]
  • 14. Gao C, Govind R, Tabak HH. Predicting soil sorption coefficients of organic chemicals using a neural network model. Environ Toxicol Chem. 1996; 15(7): 1089-96[DOI]
  • 15. Gordon AS, Millero FJ. Adsorption mediated decrease in the biodegradation rate of organic compounds. Microb Ecol. 1985; 11(4): 289-98[DOI][PubMed]
  • 16. Weissenfels WD, Klewer HJ, Langhoff J. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol. 1992; 36(5): 689-96[PubMed]
  • 17. Lyman WJ. Adsorption Coefficient for Soils and Sediments. . Handbook of Chemical Property Estimation Methods. 1990;
  • 18. Karickhoff S, Brown D, Scott T. Sorption of hydrophobic pollutants on natural sediments. Water Res. 1979; 13(3): 241-8[DOI]
  • 19. Means JC, Wood SG, Hassett JJ, Banwart WL. Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ Sci Technol. 1980; 14(12): 1524-8[DOI][PubMed]
  • 20. Karickhoff SW. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere. 1981; 10(8): 833-46[DOI]
  • 21. Tao S, Lu X. Estimation of organic carbon normalized sorption coefficient (Koc) for soils by topological indices and polarity factors. Chemosphere. 1999; 39(12): 2019-34[DOI]
  • 22. Toul J, Bezdek J, Kovarova M, Bohacek Z, Hanak J, Milicka J, et al. Sorption of hydrophobic organic pollutants on soils and sediments. Bull Geosci. 2003; 78(3): 205-23
  • 23. Mishra M, Sachan S, Nigam RS, Pandey V. QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilnes and phenols. Int J Pharm Life Sci. 2012; 3(5): 1600-5
  • 24. Giacomazzi S, Cochet N. Environmental impact of diuron transformation: a review. Chemosphere. 2004; 56(11): 1021-32[DOI][PubMed]
  • 25. Modeling phosphorus removal process using artificial neural network. 4th International BALWOIS Conference on Water Observation and Information System for Decision Support.
  • 26. Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO. Estimating Evapotranspiration using Artificial Neural Network. J Irrig Drain E-ASCE. 2002; 128(4): 224-33
  • 27. Diaconu E, Orbulet OD, Miron RA, Modrogan C. Forecasting the sorption of phosphates in soil with artificial neural networks. UPB Sci Bull. Series B. 2010; 72(3): 175-82
  • 28. Snidgha K. Modeling phenol adsorption in water environment using artificial neural network. Int J Eng Manage Sci. 2013; 4(3): 303-7
  • 29. Dreyfus G, Martinez J, Samuelides M, Gordon MB, Badran F, Thiria S. Apprentissage statistique: Reseaux de neurones-Cartes topologiques-Machines a vecteurs supports. 2011;
  • 30. Lawrence J. Introduction to Neural Networks. 1994;
  • 31. Haykin S. Neural Networks: A Comprehensive Foundation. 1994;
  • 32. Menhaj MB. Fundamentals of Neural Networks No. 1. 2012;
  • 33. Trauth MH. MATLAB Recipes for Earth Sciences. 2007; [DOI]
  • 34. Torrecilla JS, Otero L, Sanz PD. Optimization of an artificial neural network for thermal/pressure food processing: Evaluation of training algorithms. Comput Electron Agr. 2007; 56(2): 101-10[DOI]
  • 35. Kumar KV, Porkodi K. Modelling the solid–liquid adsorption processes using artificial neural networks trained by pseudo second order kinetics. Chem Eng J. 2009; 148(1): 20-5[DOI]
  • 36. Ahangar AG, Smernik RJ, Kookana RS, Chittleborough DJ. Clear effects of soil organic matter chemistry, as determined by NMR spectroscopy, on the sorption of diuron. Chemosphere. 2008; 70(7): 1153-60[DOI][PubMed]
  • 37. Trevors JT. Sterilization and inhibition of microbial activity in soil. J Microbiol Meth. 1996; 26(1-2): 53-9[DOI]
  • 38. Singh G, Panda RK. Daily sediment yield modeling with artificial neural network using 10-fold cross validation method: a small agricultural watershed, Kapgari, India. Int J Earth Sci Eng. 2011; 4(6): 443-50
  • 39. Wilding LP. Spatial Variability: Its Documentation, Accommodation, and Implication to Soil Surveys. Soil Spatial Variability. 1985;
  • 40. Hwang S, Cutright TJ. Preliminary evaluation of PAH sorptive changes in soil by Soxhlet extraction. Environ Int. 2004; 30(2): 151-8[DOI][PubMed]
  • 41. Liyanage JA, Watawala RC, Aravinna AG, Smith L, Kookana RS. Sorption of carbofuran and diuron pesticides in 43 tropical soils of Sri Lanka. J Agric Food Chem. 2006; 54(5): 1784-91[DOI][PubMed]
  • 42. Wang P, Keller AA. Sorption and desorption of atrazine and diuron onto water dispersible soil primary size fractions. Water Res. 2009; 43(5): 1448-56[DOI][PubMed]
  • 43. Ahangar AG. Organic pollutant in the soil environment: with emphasis on sorption process. A review. Am J Sci Res. 2011; 32: 115-27
  • 44. Umali BP, Oliver DP, Ostendorf B, Forrester S, Chittleborough DJ, Hutson JL, et al. Spatial distribution of diuron sorption affinity as affected by soil, terrain and management practices in an intensively managed apple orchard. J Hazard Mater. 2012; 217-218: 398-405[DOI][PubMed]
  • 45. Gao Y, Xiong W, Ling W, Xu J. Sorption of phenanthrene by soils contaminated with heavy metals. Chemosphere. 2006; 65(8): 1355-61[DOI][PubMed]
  • 46. Murphy EM, Zachara JM, Smith SC. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ Sci Technol. 1990; 24(10): 1507-16[DOI]
  • 47. Brion D, Pelletier E. Modelling PAHs adsorption and sequestration in freshwater and marine sediments. Chemosphere. 2005; 61(6): 867-76[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments