Health Scope

Published by: Kowsar

Thermodynamic Analysis of Reactive Red 198 Removal from Synthetic Wastewater by Using Multiwall Carbon Nanotubes

Mohamad Ali Baghapour 1 , Amir Hossein Mahvi 2 , 3 , 4 , * and Sudabeh Pourfadakari 1 , 5
Authors Information
1 Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, IR Iran
2 Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
3 Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, IR Iran
4 National Institute of Health Research, Tehran University of Medical Sciences, Tehran, IR Iran
5 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, IR Iran
Article information
  • Health Scope: November 10, 2013, 2 (3); 149-155
  • Published Online: November 3, 2013
  • Article Type: Research Article
  • Received: July 8, 2013
  • Revised: August 7, 2013
  • Accepted: August 12, 2013
  • DOI: 10.17795/jhealthscope-13438

To Cite: Baghapour M A, Mahvi A H, Pourfadakari S. Thermodynamic Analysis of Reactive Red 198 Removal from Synthetic Wastewater by Using Multiwall Carbon Nanotubes, Health Scope. 2013 ;2(3):149-155. doi: 10.17795/jhealthscope-13438.

Abstract
Copyright © 2013, Health Promotion Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Lei J, Liu C, Li F, Li X, Zhou S, Liu T, et al. Photodegradation of orange I in the heterogeneous iron oxide–oxalate complex system under UVA irradiation. J Haz Mat. 2006; 137(2): 1016-24
  • 2. Li Y, Sui K, Liu R, Zhao X, Zhang Y, Liang H, et al. Removal of methyl orange from aqueous solution by calcium alginate/multi-walled carbon nanotubes composite fibers. Energy Procedia. 2012; 16: 863-8
  • 3. Rahmani AR, Zarrabi M, Samarghandi MR, Afkhami A, Ghaffari HR. Degradation of Azo Dye Reactive Black 5 and acid orange 7 by Fenton-like mechanism. Iran J Chem Eng. 2010; 7(1): 87-94
  • 4. Mishra AK, Arockiadoss T, Ramaprabhu S. Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chem Eng J. 2010; 162(3): 1026-34
  • 5. Supaka N, Juntongjin K, Damronglerd S, Delia M, Strehaiano P. Microbial decolorization of reactive azo dyes in a sequential anaerobic–aerobic system. Chem Eng J. 2004; 99(2): 169-76
  • 6. Kuo CY, Wu CH, Wu JY. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. J Colloid Interface Sci. 2008; 327(2): 308-15[DOI][PubMed]
  • 7. Chatterjee S, Lee MW, Woo SH. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol. 2010; 101(6): 1800-6[DOI][PubMed]
  • 8. Qu S, Huang F, Yu S, Chen G, Kong J. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J Hazard Mater. 2008; 160(2-3): 643-7[DOI][PubMed]
  • 9. Wu CH. Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J Hazard Mater. 2007; 144(1-2): 93-100[DOI][PubMed]
  • 10. Jeni J, Kanmani S. Solar nanophotocatalytic decolorisation of reactive dyes using titanium dioxide. Iran J Environ Health Sci Eng. 2011; 8(1)
  • 11. Long RQ, Yang RT. Carbon nanotubes as superior sorbent for dioxin removal. J America Chem Society. 2001; 123(9): 2058-9
  • 12. Konicki W, Pełech I, Mijowska E, Jasińska I. Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe 3 C nanocomposite: Kinetics, equilibrium and thermodynamics. Chem Eng J. 2012;
  • 13. Machado FM, Bergmann CP, Fernandes TH, Lima EC, Royer B, Calvete T, et al. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater. 2011; 192(3): 1122-31[DOI][PubMed]
  • 14. Shirmardi M, Mesdaghinia A, Mahvi AH, Nasseri S, Nabizadeh R. Kinetics and equilibrium studies on adsorption of acid red 18 (Azo-Dye) using multiwall carbon nanotubes (MWCNTs) from aqueous solution. J Chem. 2012; 9(4): 2371-83
  • 15. Greenberg AE, Clesceri LS, Eaton AD. Standard methods for the examination of water and wastewater. 1992;
  • 16. Akar ST, Akar T, Çabuk A. Decolorization of a textile dye, Reactive Red 198 (RR198), by Aspergillus parasiticus fungal biosorbent. Brazil J Chem Eng. 2009; 26(2): 399-405
  • 17. Palanisamy PN, Agalya A, Sivakumar P. Polymer Composite—A Potential Biomaterial for the Removal of Reactive Dye. J Chem. 2012; 9(4): 1823-34
  • 18. Temkin MI, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS. 1940; 12: 217-22
  • 19. Thinakaran N, Baskaralingam P, Pulikesi M, Panneerselvam P, Sivanesan S. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. J Hazard Mater. 2008; 151(2-3): 316-22[DOI][PubMed]
  • 20. Yao Y, Xu F, Chen M, Xu Z, Zhu Z. Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol. 2010; 101(9): 3040-6[DOI][PubMed]
  • 21. Zhu HY, Jiang R, Xiao L, Zeng GM. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized gamma-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour Technol. 2010; 101(14): 5063-9[DOI][PubMed]
  • 22. Filipkowska U, Klimiuk E, Kuczajowska-Zadrozna M, Kus S. The removal of reactive dyes from binary mixtures using chitin. Polish J Environ Stud. 2004; 13(6): 653-61
  • 23. Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, et al. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater. 2011; 198: 282-90[DOI][PubMed]
  • 24. Luo P, Zhao Y, Zhang B, Liu J, Yang Y. Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res. 2010; 44(5): 1489-97[DOI][PubMed]
  • 25. Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, et al. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater. 2009; 164(2-3): 1517-22[DOI][PubMed]
  • 26. Zhao D, Zhang W, Chen C, Wang X. Adsorption of Methyl Orange Dye Onto Multiwalled Carbon Nanotubes. Procedia Environ Sci. 2013; 18: 890-5
  • 27. Al-Ghouti M, Khraisheh MA, Ahmad MN, Allen S. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study. J Colloid Interface Sci. 2005; 287(1): 6-13[DOI][PubMed]
  • 28. Kara M, Yuzer H, Sabah E, Celik MS. Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 2003; 37(1): 224-32[PubMed]
  • 29. Handan U. Equilibrium, thermodynamic and kinetics of reactive black 5 biosorption on loquat (Eriobotrya japonica) seed. Sci Res Essays. 2011; 6(19): 4113-24
  • 30. Duan J, Liu R, Chen T, Zhang B, Liu J. Halloysite nanotube-Fe3O4 composite for removal of methyl violet from aqueous solutions ,Desalination. 2012; 293: 46-52
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments