Health Scope

Published by: Kowsar

Thermodynamic Analysis of Reactive Red 198 Removal from Synthetic Wastewater by Using Multiwall Carbon Nanotubes

Mohamad Ali Baghapour 1 , Amir Hossein Mahvi 2 , 3 , 4 , * and Sudabeh Pourfadakari 1 , 5
Authors Information
1 Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, IR Iran
2 Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
3 Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, IR Iran
4 National Institute of Health Research, Tehran University of Medical Sciences, Tehran, IR Iran
5 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, IR Iran
Article information
  • Health Scope: November 10, 2013, 2 (3); 149-155
  • Published Online: November 3, 2013
  • Article Type: Research Article
  • Received: July 8, 2013
  • Revised: August 7, 2013
  • Accepted: August 12, 2013
  • DOI: 10.17795/jhealthscope-13438

To Cite: Baghapour M A, Mahvi A H, Pourfadakari S. Thermodynamic Analysis of Reactive Red 198 Removal from Synthetic Wastewater by Using Multiwall Carbon Nanotubes, Health Scope. 2013 ; 2(3):149-155. doi: 10.17795/jhealthscope-13438.

Copyright © 2013, Health Promotion Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Lei J, Liu C, Li F, Li X, Zhou S, Liu T, et al. Photodegradation of orange I in the heterogeneous iron oxide–oxalate complex system under UVA irradiation. J Haz Mat. 2006; 137(2): 1016-24
  • 2. Li Y, Sui K, Liu R, Zhao X, Zhang Y, Liang H, et al. Removal of methyl orange from aqueous solution by calcium alginate/multi-walled carbon nanotubes composite fibers. Energy Procedia. 2012; 16: 863-8
  • 3. Rahmani AR, Zarrabi M, Samarghandi MR, Afkhami A, Ghaffari HR. Degradation of Azo Dye Reactive Black 5 and acid orange 7 by Fenton-like mechanism. Iran J Chem Eng. 2010; 7(1): 87-94
  • 4. Mishra AK, Arockiadoss T, Ramaprabhu S. Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chem Eng J. 2010; 162(3): 1026-34
  • 5. Supaka N, Juntongjin K, Damronglerd S, Delia M, Strehaiano P. Microbial decolorization of reactive azo dyes in a sequential anaerobic–aerobic system. Chem Eng J. 2004; 99(2): 169-76
  • 6. Kuo CY, Wu CH, Wu JY. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. J Colloid Interface Sci. 2008; 327(2): 308-15[DOI][PubMed]
  • 7. Chatterjee S, Lee MW, Woo SH. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol. 2010; 101(6): 1800-6[DOI][PubMed]
  • 8. Qu S, Huang F, Yu S, Chen G, Kong J. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J Hazard Mater. 2008; 160(2-3): 643-7[DOI][PubMed]
  • 9. Wu CH. Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J Hazard Mater. 2007; 144(1-2): 93-100[DOI][PubMed]
  • 10. Jeni J, Kanmani S. Solar nanophotocatalytic decolorisation of reactive dyes using titanium dioxide. Iran J Environ Health Sci Eng. 2011; 8(1)
  • 11. Long RQ, Yang RT. Carbon nanotubes as superior sorbent for dioxin removal. J America Chem Society. 2001; 123(9): 2058-9
  • 12. Konicki W, Pełech I, Mijowska E, Jasińska I. Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe 3 C nanocomposite: Kinetics, equilibrium and thermodynamics. Chem Eng J. 2012;
  • 13. Machado FM, Bergmann CP, Fernandes TH, Lima EC, Royer B, Calvete T, et al. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater. 2011; 192(3): 1122-31[DOI][PubMed]
  • 14. Shirmardi M, Mesdaghinia A, Mahvi AH, Nasseri S, Nabizadeh R. Kinetics and equilibrium studies on adsorption of acid red 18 (Azo-Dye) using multiwall carbon nanotubes (MWCNTs) from aqueous solution. J Chem. 2012; 9(4): 2371-83
  • 15. Greenberg AE, Clesceri LS, Eaton AD. Standard methods for the examination of water and wastewater. 1992;
  • 16. Akar ST, Akar T, Çabuk A. Decolorization of a textile dye, Reactive Red 198 (RR198), by Aspergillus parasiticus fungal biosorbent. Brazil J Chem Eng. 2009; 26(2): 399-405
  • 17. Palanisamy PN, Agalya A, Sivakumar P. Polymer Composite—A Potential Biomaterial for the Removal of Reactive Dye. J Chem. 2012; 9(4): 1823-34
  • 18. Temkin MI, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS. 1940; 12: 217-22
  • 19. Thinakaran N, Baskaralingam P, Pulikesi M, Panneerselvam P, Sivanesan S. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. J Hazard Mater. 2008; 151(2-3): 316-22[DOI][PubMed]
  • 20. Yao Y, Xu F, Chen M, Xu Z, Zhu Z. Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol. 2010; 101(9): 3040-6[DOI][PubMed]
  • 21. Zhu HY, Jiang R, Xiao L, Zeng GM. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized gamma-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour Technol. 2010; 101(14): 5063-9[DOI][PubMed]
  • 22. Filipkowska U, Klimiuk E, Kuczajowska-Zadrozna M, Kus S. The removal of reactive dyes from binary mixtures using chitin. Polish J Environ Stud. 2004; 13(6): 653-61
  • 23. Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, et al. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater. 2011; 198: 282-90[DOI][PubMed]
  • 24. Luo P, Zhao Y, Zhang B, Liu J, Yang Y. Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res. 2010; 44(5): 1489-97[DOI][PubMed]
  • 25. Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, et al. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater. 2009; 164(2-3): 1517-22[DOI][PubMed]
  • 26. Zhao D, Zhang W, Chen C, Wang X. Adsorption of Methyl Orange Dye Onto Multiwalled Carbon Nanotubes. Procedia Environ Sci. 2013; 18: 890-5
  • 27. Al-Ghouti M, Khraisheh MA, Ahmad MN, Allen S. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study. J Colloid Interface Sci. 2005; 287(1): 6-13[DOI][PubMed]
  • 28. Kara M, Yuzer H, Sabah E, Celik MS. Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 2003; 37(1): 224-32[PubMed]
  • 29. Handan U. Equilibrium, thermodynamic and kinetics of reactive black 5 biosorption on loquat (Eriobotrya japonica) seed. Sci Res Essays. 2011; 6(19): 4113-24
  • 30. Duan J, Liu R, Chen T, Zhang B, Liu J. Halloysite nanotube-Fe3O4 composite for removal of methyl violet from aqueous solutions ,Desalination. 2012; 293: 46-52
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments