Health Scope

Published by: Kowsar

Adsorption of Methylene Blue Dye from Aqueous Solutions by Modified Pumice Stone: Kinetics and Equilibrium Studies

Zahra Derakhshan 1 , Mohammad Ali Baghapour 2 , * , Mojdeh Ranjbar 1 and Mohammad Faramarzian 2
Authors Information
1 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, IR Iran
2 Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, IR Iran
Article information
  • Health Scope: November 10, 2013, 2 (3); 136-144
  • Published Online: November 3, 2013
  • Article Type: Research Article
  • Received: May 27, 2013
  • Revised: July 23, 2013
  • Accepted: July 24, 2013
  • DOI: 10.17795/jhealthscope-12492

To Cite: Derakhshan Z, Baghapour M A, Ranjbar M, Faramarzian M. Adsorption of Methylene Blue Dye from Aqueous Solutions by Modified Pumice Stone: Kinetics and Equilibrium Studies, Health Scope. 2013 ; 2(3):136-144. doi: 10.17795/jhealthscope-12492.

Abstract
Copyright © 2013, Health Promotion Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Sapci Z, Ustun B. The removal of color and COD from textile wastewater by using waste pumice. Elec J Environ Agric Food Chem. 2003; 2(2): 286-90
  • 2. Samarghandi MR, Zarrabi M, Sepehr MN, Amrane A, Safari GH, Bashiri S. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Iranian J Environ Health Sci Eng. 2012; 9(1): 9[DOI][PubMed]
  • 3. Iqbal MJ, Ashiq MN. Adsorption of dyes from aqueous solutions on activated charcoal. J Hazard Mater. 2007; 139(1): 57-66[DOI][PubMed]
  • 4. Yang J, Qiu K. Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chem Eng J. 2010; 165(1): 209-17
  • 5. Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol. 2001; 77(3): 247-55[PubMed]
  • 6. Santhy K, Selvapathy P. Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. Bioresour Technol. 2006; 97(11): 1329-36[DOI][PubMed]
  • 7. McKay G, Porter JF, Prasad GR. The removal of dye colours from aqueous solutions by adsorption on low-cost materials. Water Air Soil Pollut. 1999; 114(3-4): 423-38
  • 8. Doğan M, Alkan M, Onganer Y. Adsorption of methylene blue from aqueous solution onto perlite. Water Air Soil Pollut. 2000; 120(3-4): 229-48
  • 9. Bereket G, Aro AZ, ozel MZ. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) from Aqueous Solutions by Adsorption on Bentonite. J Colloid Interface Sci. 1997; 187(2): 338-43[PubMed]
  • 10. Mohamed MM. Adsorption properties of ionic surfactants on molybdenum-modified silica gels. Colloids Surf A: Physicochem Eng Aspect. 1996; 108(1): 39-48
  • 11. Mohan D, Singh KP, Singh G, Kumar K. Removal of dyes from wastewater using flyash, a low-cost adsorbent. Indust Eng chem Res. 2002; 41(15): 3688-95
  • 12. Ho Y, McKay G. Sorption of dye from aqueous solution by peat. Chem Eng J. 1998; 70(2): 115-24
  • 13. McKay G, Otterburn MS, Sweeney AG. Surface mass transfer processes during colour removal from effluent using silica. Water Res. 1981; 15(3): 327-31
  • 14. Panuccio MR, Sorgona A, Rizzo M, Cacco G. Cadmium adsorption on vermiculite, zeolite and pumice: batch experimental studies. J Environ Manage. 2009; 90(1): 364-74[DOI][PubMed]
  • 15. Kaplan Bekaroglu SS, Yigit NO, Karanfil T, Kitis M. The adsorptive removal of disinfection by-product precursors in a high-SUVA water using iron oxide-coated pumice and volcanic slag particles. J Hazard Mater. 2010; 183(1-3): 389-94[DOI][PubMed]
  • 16. Moraci N, Calabro PS. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. J Environ Manage. 2010; 91(11): 2336-41[DOI][PubMed]
  • 17. Ozturk B, Yildirim Y. Investigation of sorption capacity of pumice for SO 2 capture. Process Safety Environ Protec. 2008; 86(1): 31-6
  • 18. Yavuz Ö, Aydin AH. Removal of direct dyes from aqueous solution using various adsorbents. Polish J Environ Studies. 2006; 15(1): 155-61
  • 19. Alkan M, Doğan M. Adsorption of copper (II) onto perlite. J Colloid Interface Sci. 2001; 243(2): 280-91
  • 20. Han R, Wang Y, Han P, Shi J, Yang J, Lu Y. Removal of methylene blue from aqueous solution by chaff in batch mode. J Hazard Mater. 2006; 137(1): 550-7[DOI][PubMed]
  • 21. El Qada EN, Allen SJ, Walker GM. Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem Eng J. 2006; 124(1): 103-10
  • 22. Chen H, Zhao J, Dai G. Silkworm exuviae--a new non-conventional and low-cost adsorbent for removal of methylene blue from aqueous solutions. J Hazard Mater. 2011; 186(2-3): 1320-7[DOI][PubMed]
  • 23. Karagoz S, Tay T, Ucar S, Erdem M. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour Technol. 2008; 99(14): 6214-22[DOI][PubMed]
  • 24. Hameed BH, Din AT, Ahmad AL. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater. 2007; 141(3): 819-25[DOI][PubMed]
  • 25. Rao GB, Kalyani G, Saradhi BV, Kumar YP. Removal of Fluoride from Aqueous Solution Using a Waste Material. Nature Environ Pollut Tech. 2009; 8(2): 231-6
  • 26. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J American Chem Soc. 1918; 40(9): 1361-403
  • 27. Abdelwahab O. Evaluation of the use of loofa activated carbons as potential adsorbents for aqueous solutions containing dye. Desal. 2008; 222(1): 357-67
  • 28. Ng C, Losso JN, Marshall WE, Rao RM. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system. Bioresour Technol. 2002; 85(2): 131-5[PubMed]
  • 29. Akbal F. Adsorption of basic dyes from aqueous solution onto pumice powder. J Colloid Interface Sci. 2005; 286(2): 455-8[DOI][PubMed]
  • 30. Asgari G, Roshani B, Ghanizadeh G. The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone. J Hazard Mater. 2012; 217-218: 123-32[DOI][PubMed]
  • 31. Mahvi AH, Heibati B, Mesdaghinia A, Yari AR. Fluoride Adsorption by Pumice from Aqueous Solutions. J Chem. 2012; 9(4): 1843-53
  • 32. Veliev EV, Ozturk T, Veli S, Fatullayev AG. Application of diffusion model for adsorption of azo reactive dye on pumice. Polish J Environ Studies. 2006; 15(2): 347-53
  • 33. Freundlich H. Über die adsorption in lösungen. Engelmann, Leipzig. 1906; 57: 385-470
  • 34. Temkin MJ, Pyzhev V. Recent modifications to Langmuir isotherms. Acta Physiochim USSR. 1940; 12: 217-22
  • 35. Dubinin MM, Zaverina ED, Radushkevich LV. Sorption and structure of active carbons. I. Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii. 1947; 21: 1351-62
  • 36. Rieman W, Walton H. Ion Exchange in Analytical Chemistry, International Series of Monographs in Analytical Chemistry. 1970;
  • 37. Altenor S, Carene B, Emmanuel E, Lambert J, Ehrhardt JJ, Gaspard S. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. J Hazard Mater. 2009; 165(1-3): 1029-39[DOI][PubMed]
  • 38. Çolak F, Atar N, Olgun A. Biosorption of acidic dyes from aqueous solution by Paenibacillus macerans: Kinetic, thermodynamic and equilibrium studies. Chem Eng J. 2009; 150(1): 122-30
  • 39. Murugan T, Ganapathi A, Valliappan R. Removal of dyes from aqueous solution by adsorption on biomass of mango (Mangifera indica) leaves. J Chem. 2010; 7(3): 669-76
  • 40. Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar. 1898; 24: 1-39
  • 41. Ahmad AA, Hameed BH, Aziz N. Adsorption of direct dye on palm ash: kinetic and equilibrium modeling. J Hazard Mater. 2007; 141(1): 70-6[DOI][PubMed]
  • 42. Ho Y, McKay G. Pseudo-second order model for sorption processes. Proc Biochem. 1999; 34(5): 451-65
  • 43. Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng. 1963; 89(17): 31-60
  • 44. Mall ID, Srivastava VC, Agarwal NK. Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes Pigments. 2006; 69(3): 210-23
  • 45. Amin NK. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. J Hazard Mater. 2009; 165(1-3): 52-62[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments