Health Scope

Published by: Kowsar

Adsorption of Methylene Blue Dye from Aqueous Solutions by Modified Pumice Stone: Kinetics and Equilibrium Studies

Zahra Derakhshan 1 , Mohammad Ali Baghapour 2 , * , Mojdeh Ranjbar 1 and Mohammad Faramarzian 2
Authors Information
1 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, IR Iran
2 Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, IR Iran
Article information
  • Health Scope: November 10, 2013, 2 (3); 136-144
  • Published Online: November 3, 2013
  • Article Type: Research Article
  • Received: May 27, 2013
  • Revised: July 23, 2013
  • Accepted: July 24, 2013
  • DOI: 10.17795/jhealthscope-12492

To Cite: Derakhshan Z, Baghapour M A, Ranjbar M, Faramarzian M. Adsorption of Methylene Blue Dye from Aqueous Solutions by Modified Pumice Stone: Kinetics and Equilibrium Studies, Health Scope. 2013 ; 2(3):136-144. doi: 10.17795/jhealthscope-12492.

Copyright © 2013, Health Promotion Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Sapci Z, Ustun B. The removal of color and COD from textile wastewater by using waste pumice. Elec J Environ Agric Food Chem. 2003; 2(2): 286-90
  • 2. Samarghandi MR, Zarrabi M, Sepehr MN, Amrane A, Safari GH, Bashiri S. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Iranian J Environ Health Sci Eng. 2012; 9(1): 9[DOI][PubMed]
  • 3. Iqbal MJ, Ashiq MN. Adsorption of dyes from aqueous solutions on activated charcoal. J Hazard Mater. 2007; 139(1): 57-66[DOI][PubMed]
  • 4. Yang J, Qiu K. Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chem Eng J. 2010; 165(1): 209-17
  • 5. Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol. 2001; 77(3): 247-55[PubMed]
  • 6. Santhy K, Selvapathy P. Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. Bioresour Technol. 2006; 97(11): 1329-36[DOI][PubMed]
  • 7. McKay G, Porter JF, Prasad GR. The removal of dye colours from aqueous solutions by adsorption on low-cost materials. Water Air Soil Pollut. 1999; 114(3-4): 423-38
  • 8. Doğan M, Alkan M, Onganer Y. Adsorption of methylene blue from aqueous solution onto perlite. Water Air Soil Pollut. 2000; 120(3-4): 229-48
  • 9. Bereket G, Aro AZ, ozel MZ. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) from Aqueous Solutions by Adsorption on Bentonite. J Colloid Interface Sci. 1997; 187(2): 338-43[PubMed]
  • 10. Mohamed MM. Adsorption properties of ionic surfactants on molybdenum-modified silica gels. Colloids Surf A: Physicochem Eng Aspect. 1996; 108(1): 39-48
  • 11. Mohan D, Singh KP, Singh G, Kumar K. Removal of dyes from wastewater using flyash, a low-cost adsorbent. Indust Eng chem Res. 2002; 41(15): 3688-95
  • 12. Ho Y, McKay G. Sorption of dye from aqueous solution by peat. Chem Eng J. 1998; 70(2): 115-24
  • 13. McKay G, Otterburn MS, Sweeney AG. Surface mass transfer processes during colour removal from effluent using silica. Water Res. 1981; 15(3): 327-31
  • 14. Panuccio MR, Sorgona A, Rizzo M, Cacco G. Cadmium adsorption on vermiculite, zeolite and pumice: batch experimental studies. J Environ Manage. 2009; 90(1): 364-74[DOI][PubMed]
  • 15. Kaplan Bekaroglu SS, Yigit NO, Karanfil T, Kitis M. The adsorptive removal of disinfection by-product precursors in a high-SUVA water using iron oxide-coated pumice and volcanic slag particles. J Hazard Mater. 2010; 183(1-3): 389-94[DOI][PubMed]
  • 16. Moraci N, Calabro PS. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. J Environ Manage. 2010; 91(11): 2336-41[DOI][PubMed]
  • 17. Ozturk B, Yildirim Y. Investigation of sorption capacity of pumice for SO 2 capture. Process Safety Environ Protec. 2008; 86(1): 31-6
  • 18. Yavuz Ö, Aydin AH. Removal of direct dyes from aqueous solution using various adsorbents. Polish J Environ Studies. 2006; 15(1): 155-61
  • 19. Alkan M, Doğan M. Adsorption of copper (II) onto perlite. J Colloid Interface Sci. 2001; 243(2): 280-91
  • 20. Han R, Wang Y, Han P, Shi J, Yang J, Lu Y. Removal of methylene blue from aqueous solution by chaff in batch mode. J Hazard Mater. 2006; 137(1): 550-7[DOI][PubMed]
  • 21. El Qada EN, Allen SJ, Walker GM. Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem Eng J. 2006; 124(1): 103-10
  • 22. Chen H, Zhao J, Dai G. Silkworm exuviae--a new non-conventional and low-cost adsorbent for removal of methylene blue from aqueous solutions. J Hazard Mater. 2011; 186(2-3): 1320-7[DOI][PubMed]
  • 23. Karagoz S, Tay T, Ucar S, Erdem M. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour Technol. 2008; 99(14): 6214-22[DOI][PubMed]
  • 24. Hameed BH, Din AT, Ahmad AL. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater. 2007; 141(3): 819-25[DOI][PubMed]
  • 25. Rao GB, Kalyani G, Saradhi BV, Kumar YP. Removal of Fluoride from Aqueous Solution Using a Waste Material. Nature Environ Pollut Tech. 2009; 8(2): 231-6
  • 26. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J American Chem Soc. 1918; 40(9): 1361-403
  • 27. Abdelwahab O. Evaluation of the use of loofa activated carbons as potential adsorbents for aqueous solutions containing dye. Desal. 2008; 222(1): 357-67
  • 28. Ng C, Losso JN, Marshall WE, Rao RM. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system. Bioresour Technol. 2002; 85(2): 131-5[PubMed]
  • 29. Akbal F. Adsorption of basic dyes from aqueous solution onto pumice powder. J Colloid Interface Sci. 2005; 286(2): 455-8[DOI][PubMed]
  • 30. Asgari G, Roshani B, Ghanizadeh G. The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone. J Hazard Mater. 2012; 217-218: 123-32[DOI][PubMed]
  • 31. Mahvi AH, Heibati B, Mesdaghinia A, Yari AR. Fluoride Adsorption by Pumice from Aqueous Solutions. J Chem. 2012; 9(4): 1843-53
  • 32. Veliev EV, Ozturk T, Veli S, Fatullayev AG. Application of diffusion model for adsorption of azo reactive dye on pumice. Polish J Environ Studies. 2006; 15(2): 347-53
  • 33. Freundlich H. Über die adsorption in lösungen. Engelmann, Leipzig. 1906; 57: 385-470
  • 34. Temkin MJ, Pyzhev V. Recent modifications to Langmuir isotherms. Acta Physiochim USSR. 1940; 12: 217-22
  • 35. Dubinin MM, Zaverina ED, Radushkevich LV. Sorption and structure of active carbons. I. Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii. 1947; 21: 1351-62
  • 36. Rieman W, Walton H. Ion Exchange in Analytical Chemistry, International Series of Monographs in Analytical Chemistry. 1970;
  • 37. Altenor S, Carene B, Emmanuel E, Lambert J, Ehrhardt JJ, Gaspard S. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. J Hazard Mater. 2009; 165(1-3): 1029-39[DOI][PubMed]
  • 38. Çolak F, Atar N, Olgun A. Biosorption of acidic dyes from aqueous solution by Paenibacillus macerans: Kinetic, thermodynamic and equilibrium studies. Chem Eng J. 2009; 150(1): 122-30
  • 39. Murugan T, Ganapathi A, Valliappan R. Removal of dyes from aqueous solution by adsorption on biomass of mango (Mangifera indica) leaves. J Chem. 2010; 7(3): 669-76
  • 40. Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar. 1898; 24: 1-39
  • 41. Ahmad AA, Hameed BH, Aziz N. Adsorption of direct dye on palm ash: kinetic and equilibrium modeling. J Hazard Mater. 2007; 141(1): 70-6[DOI][PubMed]
  • 42. Ho Y, McKay G. Pseudo-second order model for sorption processes. Proc Biochem. 1999; 34(5): 451-65
  • 43. Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng. 1963; 89(17): 31-60
  • 44. Mall ID, Srivastava VC, Agarwal NK. Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes Pigments. 2006; 69(3): 210-23
  • 45. Amin NK. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. J Hazard Mater. 2009; 165(1-3): 52-62[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments