To Cite:
Bazrafshan
E, Kord Mostafapour
F, Faridi
H, Farzadkia
M, Sargazi
S, et al. Removal of 2, 4-Dichlorophenoxyacetic Acid (2, 4-D) From Aqueous Environments Using Single-Walled Carbon Nanotubes,
Health Scope.
2013
; 2(1):39-46.
doi: 10.17795/jhealthscope-7710.
1.
Versari A, Parpinello GP, Galassi S. Chemometric survey of Italian bottled mineral waters by means of their labelled physico-chemical and chemical composition. J Food Compos Anal. 2002; 15: 251-64
2.
Ho KC, Chow YL, Yau JT. Chemical and microbiological qualities of The East River (Dongjiang) water, with particular reference to drinking water supply in Hong Kong. Chemosphere. 2003; 52(9): 1441-50[DOI][PubMed]
3.
Sabbik H, Jeannot R, Rondeau B. Multiresidue methods using solid-phase extraction techniques for monitoring priority pesticides, including triazines and degradation products, in ground and surface waters. J Chromatogr A. 2000; 885(1-2): 217-36[PubMed]
4.
Shankar MV, Anandan S, Venkatachalam N, Arabindoo B, Murugesan V. Fine route for an efficient removal of 2,4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2. Chemosphere. 2006; 63(6): 1014-21[DOI][PubMed]
5.
2,4-D in drinking water. Background document for development of WHO Guidelines for Drinking Water Quality. 2003;
6.
Harris SA, Solomon KR, Stephenson GR. Exposure of homeowners and bystanders to 2,4-dichlorophenoxyacetic acid (2,4-D). J Environ Sci Health B. 1992; 27(1): 23-38[DOI][PubMed]
7.
Bortolozzi AA, Evangelista De Duffard AM, Duffard RO, Antonelli MC. Effects of 2,4-dichlorophenoxyacetic acid exposure on dopamine D2-like receptors in rat brain. Neurotoxicol Teratol. 2004; 26(4): 599-605[DOI][PubMed]
8.
Bazrafshan E, Kord Mostafapour F, Faridi H, Mahvi AH. Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) onto multi-walled carbon nanotubes. Wulfenia J. 2012; 19(10): 219-39
9.
Colborn T, Vom Saal FS, Soto AM. Developmental effects of endocrine disrupting chemicals in wildlife and humans. Env Imp Ass Rev. 1993; 14: 469-48
10. Guidelines for Drinking-water Quality, World Health Organisation 2004; : 191-6
11.
Kwan CY, Chu W. Photodegradation of 2,4-dichlorophenoxyacetic acid in various iron-mediated oxidation systems. Water Res. 2003; 37(18): 4405-12[DOI][PubMed]
12.
Lee Y, Jeong J, Lee C, Kim S, Yoon J. Influence of various reaction parameters on 2,4-D removal in photo/ferrioxalate/H2O2 process. Chemosphere. 2003; 51: 901-12
13.
Chu W, Chan KH, Kwan CY, Lee CK. The system design of UV-assisted catalytic oxidation process--degradation of 2,4-D. Chemosphere. 2004; 57(3): 171-8[DOI][PubMed]
14.
Rabindram RG, Hiroaki O, Takehiro I, Ryohei T, Shogo T. Synergy of ozonation and photocatalysis to mineralize low concentration 2,4-dichlorophenoxy acetic acid in aqueous solution. Chemosphere. 2007; 66: 1610-1617
15.
Erick RB, Miguel AP, Dionysios DD, Silvia G, Javier G, Diana M. Degradation of 2, 4-dichlorophenoxyacetic acid (2,4-D) using cobalt peroxymonosulfate in Fenton-like process. J Photochem Photobio. 2007; 186: 357-63
16.
Brillas E, Calpe JC, Casado J. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res. 2000; 34(8): 2253-62
17.
Mangat SS, Elefsiniotis P. Biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in sequencing batch reactors. Water Res. 1999; 33(3): 861-7
18.
Clarkson WW, Yang CP, Harker AR. 2,4-D degradation in monoculture biofilm reactors. Water Res. 1993; 27: 1275-84
19.
Santacruz G, Bandala ER, Torres LG. Chlorinated pesticides (2,4-D and DDT) biodegradation at high concentrations using immobilized Pseudomonas fluorescens. J Environ Sci Health B. 2005; 40(4): 571-83[DOI][PubMed]
20.
Kwan CY, Chu W. Effect of ferrioxalate-exchanged resin on the removal of 2,4-D by a photocatalytic process. J Mol Catal A Chem. 2006; 255: 236-42
21.
Aksu Z, Kabasakal E. Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Sep Purif Technol. 2004; 35: 223-40
22.
Chingombe P, Saha B, Wakeman RJ. Effect of surface modification of an engineered activated carbon on the sorption of 2,4-dichlorophenoxy acetic acid and benazolin from water. J Colloid Interface Sci. 2006; 297(2): 434-42[DOI][PubMed]
23.
Vergili I, Barlas H. Removal of 2,4-D, MCPA and Metalaxyl from water using Lewatit VP OC 1163 as sorbent. Desalination. 2009; 249: 1107-14
24.
Zhou H, Han J, Baig SA, Xu X. Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles. J Hazard Mater. 2011; 198: 7-12[DOI][PubMed]
25.
Ayar N, Bilgin B, Atun G. Kinetics and equilibrium studies of the herbicide 2,4-dichlorophenoxyacetic acid adsorption on bituminous shale. Chem Engin J. 2008; 138: 239-48
26.
Ahmaruzzaman M, Sharma DK. Adsorption of phenols from wastewater. J Colloid Interface Sci. 2005; 287(1): 14-24[DOI][PubMed]
27.
Haberhauer G, Pfeiffer L, Gerzabek MH. Influence of molecular structure on sorption of phenoxyalkanoic herbicides on soil and its particle size fractions. J Agric Food Chem. 2000; 48(8): 3722-7[PubMed]
28.
Tutem E, Apak R, Unal CF. Adsorptive removal of chlorophenols from water by bituminous shale. Water Res. 1998; (8): 2315-24
29.
Alam JB, Dikshit AK, Bandyopadhayay M. Evaluation of thermodynamic properties of sorption of 2,4-D and atrazine by tire rubber granules. Sep Purif Technol. 2005; 42: 85-90
30.
Gupta VK, Ali I, Suhas VK. Adsorption of 2,4-D and carbofuran pesticides using fertilizer and steel industrywastes. J Colloid Interface Sci. 2006; 299: 556-63
31.
Prado A, Airoldi C. Adsorption, preconcentration and separation of cations on silica gel chemically modified with the herbicide 2,4- dichlorophenoxyacetic acid. Anal Chim Acta. 2001; 432: 201-11
32.
Akcay G, Akcay M, Yurdakoc K. Removal of 2,4-dichlorophenoxyacetic acid from aqueous solutions by partially characterized organophilic sepiolite: thermodynamic and kinetic calculations. J Colloid Interface Sci. 2005; 281(1): 27-32[DOI][PubMed]
33.
Legrouri A, Lakraimi M, Barroug A, De Roy A, Besse JP. Removal of the herbicide 2,4-dichlorophenoxyacetate from water to zinc-aluminium-chloride layered double hydroxides. Water Res. 2005; 39(15): 3441-8[DOI][PubMed]
34.
Iijima S. Helical microtubules of graphitic carbon. Nature. 1991; 354(56-58)
35.
Cinke M, Li J, Bauschlicher CW, Ricca A, Meyyappan M. CO2 adsorption in single-walled carbon nanotubes. Chem Phys Lett. 2003; 376: 761-6
36.
Lu C, Chiu H, Liu C. Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies . Ind Eng Chem Re. 2006; 45: 2850-5
37.
Wang HJ, Zhou AL, Peng F, Yu H, Chen LF. Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution. Mater Sci Eng. 2007; 466: 201-6
38.
Gauden PA,
Terzyk AP,
Rychlicki G,
Kowalczyk P,
Lota K,
Raymundo-Pinero E,
et al.
Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes. Chem Phys Lett. 2006; 421: 409-14
39.
Lu C, Chung YL, Chang KF. Adsorption of trihalomethanes from water with carbon nanotubes. Water Res. 2005; 39: 1183-9
40.
Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol. 2006; 40(6): 1855-61[PubMed]
41.
Lin D, Xingt B. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environ Sci Technol. 2008; 42(19): 7254-9[PubMed]
42.
Hu J, Chen C, Zhu X, Wang X. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater. 2009; 162(2-3): 1542-50[DOI][PubMed]
43.
Long RQ, Yang RT. Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc. 2001; 123(9): 2058-9[PubMed]
44.
Peng X,
Li Y,
Luan Z,
Di Z,
Wang H,
Tian B,
et al.
Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett. 2003; 376: 154-8
45.
Fagan SB,
SouzaFilho AGS,
Lima J,
Filho J,
Ferreira O,
Mazali I,
et al.
1,2-Dichlorobenzene interacting with carbon nanotubes. Nano Lett. 2004; 4: 1285-8
46.
Yang K, Wu W, Jing Q, Zhu L. Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environ Sci Technol. 2008; 42: 7931-6
47.
Beltran FJ, Ovejero G, Acedo B. Oxidation of atrazine in water by ultraviolet radiation combined with hydrogen peroxide. Water Res. 1993; 27: 1013-21
48.
ksu Z, Yener J. A comparative adsorption/biosorption study of monochlorinated phenols onto various sorbents. Waste Manage. 2001; 21: 695-702
49.
Anbia M, Ghaffari A. Adsorption of phenolic compounds from aqueous solutions using carbon nanoporous adsorbent coated with polymer. appl surf sci. 2009; 255: 9487-92
50.
Ghassemi M, Fargo L, Painter P, Quinlivan S, Scofield R, Takata A. Environmental Fates and Impacts of Major Forest Use Pesticides.” P. A-101-148. U.S. EPA. Office of Pesticides and Toxic Substances. 1981;
51.
Naghizadeh A, Nasseri S, Nazmara S. Removal of Trichloroethylene from water by adsorption on to Multiwall Carbon Nanotubes. Iran J Environ Health Sci Eng. 2011; 8(4): 317-24
52.
Calvete T, Lima EC, Cardoso NF, Dias SLP, Pavan FA. Application of carbon adsorbents prepared from the Brazilian-pine fruit shell for removal of Procion Red MX 3B from aqueous solution-kinetic, equilibrium, and thermodynamic studies. Chem Eng J. 2009; 155: 627-36
53.
Chakravarty P, Sarma NS, Sharma HP. Removal of Pb (II) from aqueous solution using heartwood of Areca catechu powder. Desalination. 2010; 256: 16-21
54.
Cengiz S, Cavas L. Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Bioresour Technol. 2008; 99(7): 2357-63[DOI][PubMed]
55.
SenthilKumar P, Ramalingam S, Sathyaselvabala V, Dinesh Kirupha S, Sivanesan S. Removal of copper(II) ions from aqueous solution by adsorption using cashew nut shell. Desalination. 2011; 266: 63-71
56.
Anbia M, Asl Hariri S. Removal of methylene blue from aqueous solution using nanoporous SBA-3 . Desalination. 2010; 261: 61-6
57.
Hameed BH, Din AT, Ahmad AL. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater. 2007; 141(3): 819-25[DOI][PubMed]
58.
Ertas M, Acemioglu B, Alma MH, Usta M. Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust. J Hazard Mater. 2010; 183(1-3): 421-7[DOI][PubMed]
59.
Shirmardi M, Mesdaghinia AR, Mahvi AH, Nasseri S, Nabizadeh R. Kinetics and equilibrium studies on adsorption of acid red 18 (Azo-Dye) using multiwall carbon nanotubes (MWCNTs) from aqueous solution. E-J Chem. 2012; 9(4): 2371-83
60.
Crittenden C, Turssel R, Hand D, Howe K, Tchobanoglousm G. Water Treatment: Principles and Design. John Wiley Sons. 2005; : 245
Readers' Comments