Health Scope

Published by: Kowsar

Preparation, Characterization, and Application of Silica Aerogel for Adsorption of Phenol: An In-Depth Isotherm Study

Alireza Rahmani 1 , Fatemeh Nazemi 2 , Fateme Barjasteh-Askari 3 , 4 , * and Mojtaba Davoudi 3 , 4
Authors Information
1 Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
2 Food and Drug Industrial Administration, Hamadan University of Medical Sciences, Hamadan, Iran
3 Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
4 Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
Article information
  • Health Scope: August 2018, 7 (3); e15115
  • Published Online: August 25, 2018
  • Article Type: Research Article
  • Received: October 6, 2016
  • Revised: June 12, 2017
  • Accepted: August 1, 2017
  • DOI: 10.5812/jhealthscope.15115

To Cite: Rahmani A, Nazemi F, Barjasteh-Askari F, Davoudi M. Preparation, Characterization, and Application of Silica Aerogel for Adsorption of Phenol: An In-Depth Isotherm Study, Health Scope. 2018 ;7(3):e15115. doi: 10.5812/jhealthscope.15115.

Abstract
Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Saravanan P, Pakshirajan K, Saha P. Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresour Technol. 2008;99(1):205-9. doi: 10.1016/j.biortech.2006.11.045. [PubMed: 17236761].
  • 2. Babuponnusami A, Muthukumar K. Advanced oxidation of phenol: a comparison between fenton, electro-fenton, sono-electro-fenton and photo-electro-fenton processes. Chem Eng J. 2012;183:1-9. doi: 10.1016/j.cej.2011.12.010.
  • 3. Schueller BS, Yang RT. Ultrasound enhanced adsorption and desorption of phenol on activated carbon and polymeric resin. Ind Eng Chem Res. 2001;40(22):4912-8. doi: 10.1021/ie010490j.
  • 4. Asgari G, Rahmani AR, Barjasteh Askari F, Godini K. Catalytic ozonation of phenol using copper coated pumice and zeolite as catalysts. J Res Health Sci. 2012;12(2):93-7. [PubMed: 23241518].
  • 5. Golbaz S, Jonidi Jafari A, Rafiee M, Rezaei Kalantary R. Separate and simultaneous removal of phenol, chromium, and cyanide from aqueous solution by coagulation/precipitation: Mechanisms and theory. Chem Eng J. 2014;253:251-7. doi: 10.1016/j.cej.2014.05.074.
  • 6. Nakhli SAA, Ahmadizadeh K, Fereshtehnejad M, Rostami MH, Safari M, Borghei SM. Biological removal of phenol from saline wastewater using a moving bed biofilm reactor containing acclimated mixed consortia. Springerplus. 2014;3:112. doi: 10.1186/2193-1801-3-112. [PubMed: 24616843]. [PubMed Central: PMC3946108].
  • 7. Bazrafshan E, Kord Mostafapour F, Mahvi AH. Phenol removal from aqueous solutions using pistachio-nut shell ash as a low cost adsorbent. Fresenius Environ Bull. 2012;21:2962-8.
  • 8. Davoudi M, Gholami M, Naseri S, Mahvi AH, Farzadkia M, Esrafili A, et al. Application of electrochemical reactor divided by cellulosic membrane for optimized simultaneous removal of phenols, chromium, and ammonia from tannery effluents. Toxicol Environ Chem. 2014;96(9):1310-32. doi: 10.1080/02772248.2014.942311.
  • 9. Bazrafshan E, Biglari H, Mahvi AH. Phenol removal by electrocoagulation process from aqueous solutions. Fresenius Environ Bull. 2012;21(2):364-71.
  • 10. Venkateswara Rao A, Hegde ND, Hirashima H. Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J Colloid Interface Sci. 2007;305(1):124-32. doi: 10.1016/j.jcis.2006.09.025. [PubMed: 17067617].
  • 11. Liu H, Sha W, Cooper AT, Fan M. Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloid Surface A Physicochem Eng Aspect. 2009;347(1-3):38-44. doi: 10.1016/j.colsurfa.2008.11.033.
  • 12. Qin G, Yao Y, Wei W, Zhang T. Preparation of hydrophobic granular silica aerogels and adsorption of phenol from water. Appl Surf Sci. 2013;280:806-11. doi: 10.1016/j.apsusc.2013.05.066.
  • 13. Bangi UKH, Jung I-K, Park C-S, Baek S, Park H-H. Optically transparent silica aerogels based on sodium silicate by a two step sol–gel process and ambient pressure drying. Solid State Sci. 2013;18:50-7. doi: 10.1016/j.solidstatesciences.2012.12.016.
  • 14. Faghihian H, Nourmoradi H, Shokouhi M. Removal of copper (II) and nickel (II) from aqueous media using silica aerogel modified with amino propyl triethoxysilane as an adsorbent: equilibrium, kinetic, and isotherms study. Desalin Water Treat. 2013;52(1-3):305-13. doi: 10.1080/19443994.2013.785367.
  • 15. Standeker S, Novak Z, Knez Z. Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity. J Hazard Mater. 2009;165(1-3):1114-8. doi: 10.1016/j.jhazmat.2008.10.123. [PubMed: 19095355].
  • 16. Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY. Silica aerogel: Synthesis and applications. J Nanomaterials. 2010;2010:1-11. doi: 10.1155/2010/409310.
  • 17. Katagiri N, Ishikawa M, Adachi N, Fuji M, Ota T. Preparation and evaluation of Au nanoparticle–silica aerogel nanocomposite. J Asian Ceram Soc. 2015;3(2):151-5. doi: 10.1016/j.jascer.2015.01.003.
  • 18. Soleimani Dorcheh A, Abbasi MH. Silica aerogel; synthesis, properties and characterization. J Mater Process Tech. 2008;199(1-3):10-26. doi: 10.1016/j.jmatprotec.2007.10.060.
  • 19. Dastgheib SA, Karanfil T, Cheng W. Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon. 2004;42(3):547-57. doi: 10.1016/j.carbon.2003.12.062.
  • 20. Doltabadi M, Alidadi H, Davoudi M. Comparative study of cationic and anionic dye removal from aqueous solutions using sawdust‐based adsorbent. Environ Progr Sustain Energ. 2016. doi: 10.1002/ep.12334.
  • 21. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156(1):2-10. doi: 10.1016/j.cej.2009.09.013.
  • 22. Samarghandi MR, Hadi M, Moayedi S, Barjesteh Askari F. Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon. Iranian J Environ Health Sci Eng. 2009;6(4):285-94.
  • 23. Neto VOS, Oliveira AG, Teixeira RNP, Silva MAA, Freire PCT, De Keukeleire D, et al. Use of coconut bagasse as alternative adsorbent for separation of copper (II) ions from aqueous solutions: isotherms, kinetics, and thermodynamic studies. BioResources. 2011;6(3):3376-95.
  • 24. Water Environment Federation; American Public Health Association. Standard methods for the examination of water and wastewater. 22th ed. Washington DC, USA: American Public Health Association (APHA); 2005.
  • 25. Tadjarodi A, Haghverdi M, Mohammadi V, Rajabi M. Synthesis and characterization of hydrophobic silica aerogel by two step (acid-base) sol-gel process. J Nanostruct. 2013;3(2):181-9. doi: 10.7508/jns.2013.02.006.
  • 26. Shokri B, Firouzjah MA, Hosseini S, editors. FTIR analysis of silicon dioxide thin film deposited by metal organic-based PECVD. Proceedings of 19th international symposium on plasma chemistry society. Bochum, Germany. 2009.
  • 27. El Rassy H, Pierre AC. NMR and IR spectroscopy of silica aerogels with different hydrophobic characteristics. J Non-Crystalline Solids. 2005;351(19-20):1603-10. doi: 10.1016/j.jnoncrysol.2005.03.048.
  • 28. Poznyak T, Vivero J. Degradation of aqueous phenol and chlorinated phenols by ozone. Ozone Sci Eng. 2005;27(6):447-58. doi: 10.1080/01919510500351529.
  • 29. Thompson SP. Structural signatures of medium-range order in annealed laboratory silicates. Astron Astrophys. 2008;484(1):251-65. doi: 10.1051/0004-6361:20078675.
  • 30. Pouretedal HR, Kazemi M. Characterization of modified silica aerogel using sodium silicate precursor and its application as adsorbent of Cu2+, Cd2+, and Pb2+ ions. Int J Ind Chem. 2012;3(1):20. doi: 10.1186/2228-5547-3-20.
  • 31. Al-Oweini R, El-Rassy H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J Mol Struct. 2009;919(1-3):140-5. doi: 10.1016/j.molstruc.2008.08.025.
  • 32. Thenmozhi G, Jaya Kumar D, Mohanraj G, Jaya Santhi R. Synthesis, characterization and biological applications of poly meta amino phenol and its nano compound. Der Pharma Chemica. 2011;3(6):325-33.
  • 33. Malinowska B, Walendziewski J, Robert D, Weber JV, Stolarski M. The study of photocatalytic activities of titania and titania–silica aerogels. Appl Catal B Environ. 2003;46(3):441-51. doi: 10.1016/s0926-3373(03)00273-x.
  • 34. Rodrigues LA, Campos TMB, Alvarez-Mendes MO, dos Reis Coutinho A, Sakane KK, Thim GP. Phenol removal from aqueous solution by carbon xerogel. J Sol-Gel Sci Tech. 2012;63(2):202-10. doi: 10.1007/s10971-012-2745-3.
  • 35. Abdoli SM, Bastani D, Bargozin H. Adsorption of phenol compounds by nanoporous silica aerogel. Scientia Iranica. Transaction C, Chem, Chem Eng. 2015;22(3):992.
  • 36. Abdelwahab O, Amin NK. Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: Kinetics, isotherm and thermodynamic studies. Egypt J Aquat Res. 2013;39(4):215-23. doi: 10.1016/j.ejar.2013.12.011.
  • 37. Bazrafshan E, Biglari H, Mahvi AH. Performance evaluation of electrocoagulation process for phenol removal from aqueous solutions. Fresenius Environ Bull. 2012;21:364-71.
  • 38. Sener S. Use of solid wastes of the soda ash plant as an adsorbent for the removal of anionic dyes: Equilibrium and kinetic studies. Chem Eng J. 2008;138(1-3):207-14. doi: 10.1016/j.cej.2007.06.035.
  • 39. Hameed B, Daud F. Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat. Chem Eng J. 2008;139(1):48-55. doi: 10.1016/j.cej.2007.07.089.
  • 40. Witek-Krowiak A. Analysis of influence of process conditions on kinetics of malachite green biosorption onto beech sawdust. Chem Eng J. 2011;171(3):976-85. doi: 10.1016/j.cej.2011.04.048.
  • 41. Najafpoor A, Alidadi H, Esmaeili H, Hadilou T, Dolatabadi M, Hosseinzadeh A, et al. Optimization of anionic dye adsorption ontoMelia azedarachsawdust in aqueous solutions: effect of calcium cations. Asia Pac J Chem Eng. 2016;11(2):258-70. doi: 10.1002/apj.1962.
  • 42. Gokce Y, Aktas Z. Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Appl Surf Sci. 2014;313:352-9. doi: 10.1016/j.apsusc.2014.05.214.
  • 43. Han J, Du Z, Zou W, Li H, Zhang C. In-situ improved phenol adsorption at ions-enrichment interface of porous adsorbent for simultaneous removal of copper ions and phenol. Chem Eng J. 2015;262:571-8. doi: 10.1016/j.cej.2014.10.018.
  • 44. Yaneva ZL, Koumanova BK, Georgieva NV. Linear and nonlinear regression methods for equilibrium modelling of p-nitrophenol biosorption by Rhizopus oryzae: Comparison of error analysis criteria. J Chem. 2013;2013:1-10. doi: 10.1155/2013/517631.
  • 45. Hamdaoui O, Naffrechoux E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models with more than two parameters. J Hazard Mater. 2007;147(1-2):401-11. doi: 10.1016/j.jhazmat.2007.01.023. [PubMed: 17289259].
  • 46. Lin SH, Juang RS. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J Environ Manage. 2009;90(3):1336-49. doi: 10.1016/j.jenvman.2008.09.003. [PubMed: 18995949].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments