Health Scope

Published by: Kowsar

Monitoring of Element Changes During in-Vessel Composting for Removal of Total Petroleum Hydrocarbons from Oily Acidic Sludge

Ali Reza Asgari 1 , 2 , Ramin Nabizadeh 1 , Amir Hossein Mahvi 1 , 2 , Simin Naseri 1 , 3 , Mohammad Hadi Dehghani 1 , Shahrokh Nazmara 1 and Kamyar Yaghmaeian 1 , 2 , *
Authors Information
1 Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2 Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
3 Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran
Article information
  • Health Scope: November 2018, 7 (4); e14116
  • Published Online: October 24, 2018
  • Article Type: Research Article
  • Received: January 14, 2017
  • Revised: May 27, 2017
  • Accepted: June 30, 2017
  • DOI: 10.5812/jhealthscope.14116

To Cite: Asgari A R, Nabizadeh R , Mahvi A H, Naseri S, Dehghani M H , et al. Monitoring of Element Changes During in-Vessel Composting for Removal of Total Petroleum Hydrocarbons from Oily Acidic Sludge, Health Scope. 2018 ; 7(4):e14116. doi: 10.5812/jhealthscope.14116.

Abstract
Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results and Discussion
5. Conclusion
Acknowledgements
Footnote
References
  • 1. Haroun M, Idris A, Omar S. Analysis of heavy metals during composting of the tannery sludge using physicochemical and spectroscopic techniques. J Hazard Mater. 2009;165(1-3):111-9. doi: 10.1016/j.jhazmat.2008.09.092. [PubMed: 18990495].
  • 2. Hossaini H, Fatehizadeh A, Yousefi N, Reshadat S, Gilan NR, Ghasemi S, et al. Application of enhanced softening process in slaughterhouse wastewater treatment. NISCAIR-CSIR. 2013;20(3):217-21.
  • 3. Ahmadian M, Reshadat S, Yousefi N, Mirhossieni SH, Zare MR, Ghasemi SR, et al. Municipal leachate treatment by Fenton process: Effect of some variable and kinetics. J Environ Public Health. 2013;2013:169682. doi: 10.1155/2013/169682. [PubMed: 23840229]. [PubMed Central: PMC3690258].
  • 4. Asgari AR, Vaezi F, Nasseri S, Dördelmann O, Mahvi AH, Dehghani Fard E. Removal of hexavalent chromium from drinking water by granular ferric hydroxide. Iran J Env Health, Sci Engin. 2008;5(4):277-82.
  • 5. Ahmadi M, Teymouri P, Setodeh A, Mortazavi MS, Asgari AR. Adsorption of Pb (Ii) from aqueous solution onto lewatit Fo36 nano resin: Equilibrium and kinetic studies. Env Engin Manage J. 2011;10(10):1579-87. doi: 10.30638/eemj.2011.219.
  • 6. Ahmadian M, Malakootian M, Yousefi N, Fatehizadeh A, Ginkel SWV, Ghorbani M, et al. Nickel (Ii) removal from industrial plating effluent by fenton process. Env Engine Manage J. 2015;14(4):837-42. doi: 10.30638/eemj.2015.093.
  • 7. Jonidi Jafari A, Hassanpour M, Farzadkia M. Economic evaluation of recycling acidic sludge project of reprocessing industries to bitumen (A case study). Env Tech Innov. 2016;5:30-40. doi: 10.1016/j.eti.2015.11.004.
  • 8. Koolivand A, Naddafi K, Nabizadeh R, Nasseri S, Jonidi Jafari A, Yunesian M, et al. Degradation of petroleum hydrocarbons from bottom sludge of crude oil storage tanks using in-vessel composting followed by oxidation with hydrogen peroxide and Fenton. J Mater Cycles Waste Manage. 2013;15(3):321-7. doi: 10.1007/s10163-013-0121-1.
  • 9. Asgari AR, Nabizadeh R, Mahvi AH, Nasseri S, Dehghani MH, Nazmara S, et al. Biodegradation of total petroleum hydrocarbons from acidic sludge produced by re-refinery industries of waste oil using in-vessel composting. J Env Health Sci Engine. 2017;15(3). doi: 10.1186/s40201-017-0267-1.
  • 10. Hu G, Li J, Zeng G. Recent development in the treatment of oily sludge from petroleum industry: A review. J Hazard Mater. 2013;261:470-90. doi: 10.1016/j.jhazmat.2013.07.069. [PubMed: 23978722].
  • 11. Kim JD, Park JS, In BH, Kim D, Namkoong W. Evaluation of pilot-scale in-vessel composting for food waste treatment. J Hazard Mater. 2008;154(1-3):272-7. doi: 10.1016/j.jhazmat.2007.10.023. [PubMed: 18023532].
  • 12. Antizar-Ladislao B, Lopez-Real J, Beck AJ. Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under in-vessel composting conditions. Environ Pollut. 2006;141(3):459-68. doi: 10.1016/j.envpol.2005.08.066. [PubMed: 16246473].
  • 13. Koolivand A, Naddafi K, Nabizadeh R, Nasseri S, Jonidi Jafari A, Yunesian M, et al. Biodegradation of petroleum hydrocarbons of bottom sludge from crude oil storage tanks by in-vessel composting. Toxicol env chem. 2013;95(1):101-9. doi: 10.1080/02772248.2012.753073.
  • 14. Brewer LJ, Sullivan DM. Maturity and stability evaluation of composted yard trimmings. Compost Sci Utiliz. 2003;11(2):96-112. doi: 10.1080/1065657x.2003.10702117.
  • 15. Hseu ZY. Evaluating heavy metal contents in nine composts using four digestion methods. Bioresour Technol. 2004;95(1):53-9. doi: 10.1016/j.biortech.2004.02.008. [PubMed: 15207295].
  • 16. Thomas J, Ward C, Raymond R, Wilson J, Loehr R. Bioremediation. Encyclopedia of Microbiology. 1. 1992. p. 369-85.
  • 17. Zhang L, Sun X. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manag. 2016;48:115-26. doi: 10.1016/j.wasman.2015.11.032. [PubMed: 26644164].
  • 18. Coulon F, Pelletier E, Gourhant L, Delille D. Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere. 2005;58(10):1439-48. doi: 10.1016/j.chemosphere.2004.10.007. [PubMed: 15686763].
  • 19. Li Y, Li W. Nitrogen transformations and losses during composting of sewage sludge with acidified sawdust in a laboratory reactor. Waste Manag Res. 2015;33(2):139-45. doi: 10.1177/0734242X14564642. [PubMed: 25649403].
  • 20. Loehr RC, Smith JR, Corsi RL. VOC and SVOC emissions from slurry and solid phase bioremediation processes. Pract Period Hazard Toxic Radioactive Waste Manage. 2001;5(4):211-24. doi: 10.1061/(asce)1090-025x(2001)5:4(211).
  • 21. Nam K, Rodriguez W, Kukor JJ. Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere. 2001;45(1):11-20. doi: 10.1016/s0045-6535(01)00051-0.
  • 22. Hsu JH, Lo SL. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Env Pollut. 2001;114(1):119-27. doi: 10.1016/s0269-7491(00)00198-6.
  • 23. Comas J, Dominguez C, Salas-Vazquez DI, Parera J, Diez S, Bayona JM. Input and leaching potential of copper, zinc, and selenium in agricultural soil from swine slurry. Arch Environ Contam Toxicol. 2014;66(2):277-86. doi: 10.1007/s00244-013-9982-5. [PubMed: 24374934].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments