Health Scope

Published by: Kowsar

Inactivation of Escherichia coli in Water by Combined Process of Silver Nanoparticle and Ultraviolet Radiation

Mohammad Ali Zazouli 1 , Maryam Yousefi 2 , * , Yousef Kor 3 and Mitra Roohafzaee 2
Authors Information
1 Department of Environmental Health Engineering, Health Sciences Research Center, Faculty of Health, Mazandaran University of Medical Sciences, Sari, IR Iran
2 Department of Environmental Health Engineering, Student Research Committee, Mazandaran University of Medical Sciences, Sari, IR Iran
3 Department of Water and Wastewater engineering, Gomishan Health Center, Golestan University of Medical Sciences, Gorgan, IR Iran
Article information
  • Health Scope: May 2017, 6 (2); e39102
  • Published Online: October 10, 2016
  • Article Type: Research Article
  • Received: July 1, 2016
  • Revised: September 16, 2016
  • Accepted: September 21, 2016
  • DOI: 10.5812/jhealthscope.39102

To Cite: Zazouli M A, Yousefi M, Kor Y, Roohafzaee M. Inactivation of Escherichia coli in Water by Combined Process of Silver Nanoparticle and Ultraviolet Radiation, Health Scope. 2017 ; 6(2):e39102. doi: 10.5812/jhealthscope.39102.

Abstract
Copyright © 2016, Health Promotion Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Chong M, Jin B, Saint C. Bacterial inactivation kinetics of a photo-disinfection system using novel titania-impregnated kaolinite photocatalyst. Chem Eng J. 2011; 171(1): 16-23
  • 2. Gholami M, Mirzaei R, Mohammadi R, Zarghampour Z, Afshari A. Destruction of Escherichia coli and Enterococcus faecalis using low frequency ultrasound technology: a response surface methodology. Health Scope. 2014; 3(1)
  • 3. Niven R. Investigation of silver electrochemistry water disinfection applications. 2005;
  • 4. Salvato JA, Nemerow NL, Agardy FJ. Environmental engineering. 2003;
  • 5. Agency EP. Water Treatment Manual:Disinfection. 2011; : 187
  • 6. Huang J, Wang L, Ren N, Ma F, Ju L, Liu X. Disinfection effect of chlorine dioxide on viruses, algae and animal planktons in water. Envi Chem. 1995; 15(4): 347-55
  • 7. Junli H, Li W, Nenqi R, Li L, Fun SR, Guanle Y. Disinfection effect of chlorine dioxide on viruses, algae and animal planktons in water. Water Res. 1997; 31(3): 455-60
  • 8. Sun DD, Tay JH, Tan KM. Photocatalytic degradation of E. coliform in water. Water Res. 2003; 37(14): 3452-62[DOI][PubMed]
  • 9. Lin S, Huang R, Cheng Y, Liu J, Lau BL, Wiesner MR. Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Res. 2013; 47(12): 3959-65[DOI][PubMed]
  • 10. Richardson SD. New disinfection by-product issues: emerging DBPs and alternative routes of exposure. Global Nest J. 2005; 7(1): 43-60
  • 11. Coleman HM, Marquis CP, Scott JA, Chin SS, Amal R. Bactericidal effects of titanium dioxide-based photocatalysts. Chem Engin J. 2005; 113(1): 55-63
  • 12. Savage N, Diallo MS. Nanomaterials and water purification: opportunities and challenges. J Nanoparticle Res. 2005; 7(4-5): 331-42
  • 13. Nakata K, Fujishima A. Photocatalysis: Design and applications. J Photochem Photobiol C: Photochem Rev. 2012; 13(3): 169-89
  • 14. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013; 87(7): 1181-200[DOI][PubMed]
  • 15. Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013; 6(6): 2295-350
  • 16. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16(10): 2346-53[DOI][PubMed]
  • 17. Tugulea AM, Berube D, Giddings M, Lemieux F, Hnatiw J, Priem J, et al. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation. Environ Sci Pollut Res Int. 2014; 21(20): 11823-31[DOI][PubMed]
  • 18. Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, et al. Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol. 2009; 43(9): 3322-8[PubMed]
  • 19. Miranzadeh MB, Rabbani D, Naseri S, Nabizadeh R, Mousavi SGA, Ghadami F. Coliform bacteria removal from contaminated water using nanosilver. Feyz J Kashan Univ Med Sci. 2012; 16(1)
  • 20. Li Y, Zhang W, Niu J, Chen Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 2012; 6(6): 5164-73[DOI][PubMed]
  • 21. Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011; 77(7): 2325-31[DOI][PubMed]
  • 22. Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA. Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B Biointerfaces. 2013; 102: 300-6[DOI][PubMed]
  • 23. Persian Type Culture Collection. 2016;
  • 24. Dhara L, Tripathi A. Antimicrobial activity of eugenol and cinnamaldehyde against extended spectrum beta lactamase producing enterobacteriaceae by in vitro and molecular docking analysis. Eur J Integrative Med. 2013; 5(6): 527-36
  • 25. Garcia L. Preparation of Routine Media and Reagents Used in Antimicrobial Susceptibility Testing. 2010;
  • 26. Apha A. WPCF, Standard methods for the examination of water and wastewater 1995;
  • 27. Noroozi R, Mehdinezhad MH. Photocatalytic removal of Escherichia coli by ZnO activated by ultraviolet-C light from aqueous solution. Med Laborat J. 2011; 5(2): 52-61
  • 28. Zazouli M, Ahanjan M, Kor Y, Eslamifar M, Hosseini M, Yousefi M. Water disinfection using Photocatalytic process with titanium dioxide Nanoparticles. J Mazandaran Univ Med Sci. 2015; 24(122): 227-38
  • 29. Reisner DE. Bionanotechnology II: Global Prospects. 2011; 2
  • 30. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008; 42(18): 4591-602[DOI][PubMed]
  • 31. Rabbani D, Miranzadeh MB, Ghadami F, Zarjam R. Effect of nanosilver solution on coliforms removal in synthetic polluted water. J Appl Technol Environ Sanit. 2013; 3(1)
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments