Health Scope

Published by: Kowsar

Bioremediation of Alkane Hydrocarbons Using Bacterial Consortium From Soil

Majid Nozari 1 , Mohammad Reza Samaei 1 , 2 , * , Mansooreh Dehghani 1 and Ali Asghar Ebrahimi 3
Authors Information
1 Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
2 Department of Environmental Health Engineering, Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
3 Department of Environmental Health Engineering, Environmental Science and Technology Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Article information
  • Health Scope: August 2018, 7 (3); e12524
  • Published Online: August 14, 2018
  • Article Type: Research Article
  • Received: January 24, 2017
  • Revised: May 3, 2017
  • Accepted: June 16, 2017
  • DOI: 10.5812/jhealthscope.12524

To Cite: Nozari M, Samaei M R, Dehghani M, Ebrahimi A A. Bioremediation of Alkane Hydrocarbons Using Bacterial Consortium From Soil, Health Scope. 2018 ; 7(3):e12524. doi: 10.5812/jhealthscope.12524.

Abstract
Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Joseph PJ, Joseph A. Microbial enhanced separation of oil from a petroleum refinery sludge. J Hazard Mater. 2009;161(1):522-5. doi: 10.1016/j.jhazmat.2008.03.131. [PubMed: 18468790].
  • 2. Dehghani M, Taatizadeh SB, Samaei MR. Biodegradation of n-hexadecane in acinetobacter radioresistens liquid culture. Health Scope. 2013;2(3):162-7. doi: 10.17795/jhealthscope-14262.
  • 3. Prasanna D, Venkata Mohan S, Purushotham Reddy B, Sarma PN. Bioremediation of anthracene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode. J Hazard Mater. 2008;153(1-2):244-51. doi: 10.1016/j.jhazmat.2007.08.063. [PubMed: 17923291].
  • 4. Boopathy R. Factors limiting bioremediation technologies. Bioresource Technology. 2000;74(1):63-7. doi: 10.1016/s0960-8524(99)00144-3.
  • 5. Venkata Mohan S, Kisa T, Ohkuma T, Kanaly RA, Shimizu Y. Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol. 2006;5(4):347-74. doi: 10.1007/s11157-006-0004-1.
  • 6. Vidali M. Bioremediation. An overview. Pure Appl Chem. 2001;73(7):1163-72. doi: 10.1351/pac200173071163.
  • 7. Robles-Gonzalez IV, Fava F, Poggi-Varaldo HM. A review on slurry bioreactors for bioremediation of soils and sediments. Microb Cell Fact. 2008;7:5. doi: 10.1186/1475-2859-7-5. [PubMed: 18312630]. [PubMed Central: PMC2292675].
  • 8. Samaei MR, Mortazavi SB, Bakhshi B, Jonidi Jafari A. Isolation, genetic identification, and degradation characteristics of n-Hexadecane degrading bacteria from tropical areas in Iran. Freseb Environ Bull. 2013;22(4):1304-12.
  • 9. Samaei MR, Mortazavi SB, Jonidi Jafari A, Bakhshi B. Isolation, biodegradation ability, and molecular detection of n-Hexadecane degrading bacteria from compost. Antalya/Turkey; 2014.
  • 10. Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl Environ Microbiol. 2003;69(6):3085-92. [PubMed: 12788702]. [PubMed Central: PMC161509].
  • 11. Pawar RM. The effect of soil pH on degradation of polycyclic aromatic hydrocarbons. University of Hertfordshire; 2012.
  • 12. Dehghani M, Shahsavani E, Farzadkia M, Samaei MR. Optimizing photo-Fenton like process for the removal of diesel fuel from the aqueous phase. J Environ Health Sci Eng. 2014;12:87. doi: 10.1186/2052-336X-12-87. [PubMed: 24955242]. [PubMed Central: PMC4045957].
  • 13. Hawthorne SB, Sievers RE. Emission of organic air pollutants from shale oil wastewaters. Environ Sci Technol. 1984;18(6):483-90. doi: 10.1021/es00124a016. [PubMed: 22247953].
  • 14. Dannecker W, Au M, Stechmann H. Substance load in rainwater runoff from different streets in Hamburg. Sci Total Environ. 1990;93:385-92. [PubMed: 2360021].
  • 15. Rydberg J. Solvent extraction principles and practice, revised and expanded. 2, revised ed. CRC Press; 2004. doi: 10.1201/9780203021460.
  • 16. Maletic SP, Dalmacija BD, Roncevic SD, Agbaba JR, Perovic SD. Impact of hydrocarbon type, concentration and weathering on its biodegradability in soil. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2011;46(10):1042-9. doi: 10.1080/10934529.2011.590380. [PubMed: 21806450].
  • 17. Noordman WH, Wachter JHJ, de Boer GJ, Janssen DB. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J Biotech. 2002;94(2):195-212. doi: 10.1016/s0168-1656(01)00405-9.
  • 18. Samaei MR, Mortazavi SB, Bakhshi B, Jonidi Jafari A. Isolation and Characterization of bacteria degrading n-Hexadecane from soil. International Conference on Biological and Life Sciences Singapore. 2012. p. 132-5.
  • 19. Tzintzun-Camacho O, Loera O, Ramírez-Saad HC, Gutiérrez-Rojas M. Comparison of mechanisms of hexadecane uptake among pure and mixed cultures derived from a bacterial consortium. Int Biodeter Biodegr. 2012;70:1-7. doi: 10.1016/j.ibiod.2012.01.009.
  • 20. Nozari M, Samaei MR, Dehghani M. Investigation of the effect of co-metabolism on removal of dodecane by microbial consortium from soil in a slurry sequencing bioreactor. J Bioremed Biodeg. 2014;5(7):1-9.
  • 21. Nozari M, Samaei MR, Dehghani M. The effect of co-metabolism on removal of hexadecane by microbial consortium from soil in a slurry sequencing batch reactor. J Health Sci Surveillance Sys. 2014;2(3):113-24.
  • 22. Birol F. World energy outlook 2010. 1. International Energy Agency; 2010. p. 1-23.
  • 23. Jorfi S, Samaei MR, Darvishi Cheshmeh Soltani R, Talaie Khozani A, Ahmadi M, Barzegar G, et al. Enhancement of the bioremediation of pyrene-contaminated soils using a hematite nanoparticle-based modified fenton oxidation in a sequenced approach. Soil Sediment Contam. 2017;26(2):141-56. doi: 10.1080/15320383.2017.1255875.
  • 24. Rostami S, Azhdarpoor A, Rostami M, Samaei MR. The effects of simultaneous application of plant growth regulators and bioaugmentation on improvement of phytoremediation of pyrene contaminated soils. Chemosphere. 2016;161:219-23. doi: 10.1016/j.chemosphere.2016.07.026. [PubMed: 27434251].
  • 25. Ansari Shiri M, Dehghani M, Samaei MR. Isolation of atrazine degrading bacteria in semi-salinity medium. J Health Sci Surveillance Sys. 2016;4(3):121-8.
  • 26. Maeda N, Israelachvili JN, Kohonen MM. Evaporation and instabilities of microscopic capillary bridges. Proc Natl Acad Sci U S A. 2003;100(3):803-8. doi: 10.1073/pnas.0234283100. [PubMed: 12538868]. [PubMed Central: PMC298682].
  • 27. Tang J, Lu X, Sun Q, Zhu W. Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agric Ecosyst Environ. 2012;149:109-17. doi: 10.1016/j.agee.2011.12.020.
  • 28. Bonomo RP, Cennamo G, Purrello R, Santoro AM, Zappala R. Comparison of three fungal laccases from Rigidoporus lignosus and Pleurotus ostreatus: correlation between conformation changes and catalytic activity. J Inorg Biochem. 2001;83(1):67-75. doi: 10.1016/s0162-0134(00)00130-6.
  • 29. Berthe-Corti L, Fetzner S. Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions. Eng Life Sci. 2002;22(3-4):299-336. doi: 10.1002/1521-3846(200207)22:3/4<299::aid-abio299>3.0.co;2-f.
  • 30. Schauer F. [Degradation and utilization of mineral oil constituents by microorganisms]. 11. Bodden: University of Greifswald; 2001. German.
  • 31. Liu CW, Liu HS. Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors. Process Biochem. 2011;46(1):202-9. doi: 10.1016/j.procbio.2010.08.008.
  • 32. Poortinga AT, Bos R, Norde W, Busscher HJ. Electric double layer interactions in bacterial adhesion to surfaces. Surf Sci Rep. 2002;47(1):1-32. doi: 10.1016/s0167-5729(02)00032-8.
  • 33. Dastgheib SM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A. Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol. 2012;95(3):789-98. doi: 10.1007/s00253-011-3706-4. [PubMed: 22086071].
  • 34. Rockne KJ, Strand SE. Biodegradation of bicyclic and polycyclic aromatic hydrocarbons in anaerobic enrichments. Environ Sci Technol. 1998;32(24):3962-7.
  • 35. Shallu S, Hardik P, Jaroli DP. Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. Int J Pure App Biosci. 2014;2(3):185-202.
  • 36. Curtis F, Lammey J. Intrinsic remediation of a diesel fuel plume in Goose Bay, Labrador, Canada. Environ Pollut. 1998;103(2-3):203-10. doi: 10.1016/s0269-7491(98)00126-2.
  • 37. Juneson C, Ward OP, Singh A. Biodegradation of bis (2-ethylhexyl) phthalate in a soil slurry-sequencing batch reactor. Process Biochem. 2001;37(3):305-13. doi: 10.1016/s0032-9592(01)00196-0.
  • 38. Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature. 1994;372(6505):455-8. doi: 10.1038/372455a0. [PubMed: 7984238].
  • 39. Klug MJ, Markovetz AJ. Thermophilic bacterium isolated on n-tetradecane. Nature. 1967;215(5105):1082-3. [PubMed: 6061797].
  • 40. Sukatsch DA, Johnson MJ. Bacterial cell production from hexadecane at high temperatures. Appl Microbiol. 1972;23(3):543-6. [PubMed: 5021971]. [PubMed Central: PMC380384].
  • 41. Ratkowsky DA, Olley J, McMeekin TA, Ball A. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol. 1982;149(1):1-5. [PubMed: 7054139]. [PubMed Central: PMC216584].
  • 42. Genthner B, Townsend GT, Lantz SE, Mueller JG. Persistence of polycyclic aromatic hydrocarbon components of creosote under anaerobic enrichment conditions. Archives of Environmental Contamination and Toxicology. 1997;32(1):99-105. doi: 10.1007/s002449900160.
  • 43. Ahmed AM, Naif AH, Salem AD. Hexadecane degradation by bacterial strains isolated from contaminated soils. Afr J Biotechnol. 2010;9(44):7487-94. doi: 10.5897/ajb10.638.
  • 44. Lopez Z, Vila J, Ortega-Calvo JJ, Grifoll M. Simultaneous biodegradation of creosote-polycyclic aromatic hydrocarbons by a pyrene-degrading Mycobacterium. Appl Microbiol Biotechnol. 2008;78(1):165-72. doi: 10.1007/s00253-007-1284-2. [PubMed: 18074131].
  • 45. Sun JQ, Xu L, Tang YQ, Chen FM, Wu XL. Simultaneous degradation of phenol and n-hexadecane by Acinetobacter strains. Bioresour Technol. 2012;123:664-8. doi: 10.1016/j.biortech.2012.06.072. [PubMed: 22939600].
  • 46. Zhao XX, Zhao HM, Quan X, Chen S, Zhao YZ. Biodegradation of phenanthrene, anthracene and n-hexadecane in petroleum-contaminated soil. Chinese J Eco. 2009;3:456-60.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments