Health Scope

Published by: Kowsar

Development of Aerobic Granular Sludge for Chemical Industries Wastewater Treatment

Mohammad Rafiee 1 , 2 , Elham Razmi 3 , Shokoofeh Mohebbi 4 and Mahsa Jahangiri-Rad 5 , *
Authors Information
1 Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
4 Department of Environmental Health Engineering, School of Public Health, Alborz University of Medical Sciences, Karaj, Iran
5 Water Purification Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
Article information
  • Health Scope: May 2018, 7 (2); e12443
  • Published Online: May 31, 2018
  • Article Type: Research Article
  • Received: January 7, 2017
  • Revised: May 25, 2017
  • Accepted: May 31, 2017
  • DOI: 10.5812/jhealthscope.12443

To Cite: Rafiee M, Razmi E, Mohebbi S, Jahangiri-Rad M. Development of Aerobic Granular Sludge for Chemical Industries Wastewater Treatment, Health Scope. 2018 ; 7(2):e12443. doi: 10.5812/jhealthscope.12443.

Copyright © 2018, Journal of Health Scope. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Saxena G, Chandra R, Bharagava RN. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants. Rev Environ Contam Toxicol. 2017;240:31-69. doi: 10.1007/398_2015_5009. [PubMed: 26795766].
  • 2. Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, et al. Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants – A review. Sci Total Environ. 2017;576:646-59. doi: 10.1016/j.scitotenv.2016.10.137.
  • 3. Tomei MC, Del Moro G, Di Iaconi C, Mascolo G. Enhanced Biological Wastewater Treatment to Produce Effluents Suitable for Reuse. Advanced Treatment Technologies for Urban Wastewater Reuse:. 45. Springer; 2015. p. 79-105. doi: 10.1007/698_2015_362.
  • 4. Sipma J, Osuna MB, Emanuelsson MAE, Castro PML. Biotreatment of industrial wastewaters under transient-state conditions: Process stability with fluctuations of organic load, substrates, toxicants, and environmental parameters. Crit Rev Environ Sci Technol. 2010;40(2):147-97. doi: 10.1080/10643380802039329.
  • 5. Mutamim NSA, Noor ZZ, Hassan MAA, Yuniarto A, Olsson G. Membrane bioreactor: Applications and limitations in treating high strength industrial wastewater. Chem Eng J. 2013;225:109-19. doi: 10.1016/j.cej.2013.02.131.
  • 6. Ahmad AL, Chong MF, Bhatia S, Ismail S. Drinking water reclamation from palm oil mill effluent (POME) using membrane technology. Desalination. 2006;191(1-3):35-44. doi: 10.1016/j.desal.2005.06.033.
  • 7. de Kreuk MK, Heijnen JJ, van Loosdrecht MC. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol Bioeng. 2005;90(6):761-9. doi: 10.1002/bit.20470. [PubMed: 15849693].
  • 8. Giesen A, Niermans R, van Loosdrecht M. Aerobic granular biomass: the new standard for domestic and industrial wastewater treatment. Water 21. 2012;4:28-30.
  • 9. Rafiee M, Mesdaghinia A, Ghahremani MH, Nasseri S, Nabizadeh R. 4-Chlorophenol inhibition on flocculent and granular sludge sequencing batch reactors treating synthetic industrial wastewater. Desalination Water Treat. 2012;49(1-3):307-16. doi: 10.1080/19443994.2012.719352.
  • 10. Liu QS, Tay JH, Liu Y. Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor. Environ Technol. 2003;24(10):1235-42. doi: 10.1080/09593330309385665. [PubMed: 14669803].
  • 11. Liu XW, Sheng GP, Yu HQ. Physicochemical characteristics of microbial granules. Biotechnol Adv. 2009;27(6):1061-70. doi: 10.1016/j.biotechadv.2009.05.020. [PubMed: 19464355].
  • 12. Hassani AH, Borghei SM, Samadyar H, Ghanbari B. Utilization of moving bed biofilm reactor for industrial wastewater treatment containing ethylene glycol: kinetic and performance study. Environ Technol. 2014;35(1-4):499-507. doi: 10.1080/09593330.2013.834947. [PubMed: 24600890].
  • 13. Federation WE , Association APH . Standard methods for the examination of water and wastewater. Washington, DC, USA: American Public Health Association (APHA):; 2005.
  • 14. Liu Y, Tay JH. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 2002;36(7):1653-65. [PubMed: 12044065].
  • 15. Ramos C, Suarez-Ojeda ME, Carrera J. Long-term impact of salinity on the performance and microbial population of an aerobic granular reactor treating a high-strength aromatic wastewater. Bioresour Technol. 2015;198:844-51. doi: 10.1016/j.biortech.2015.09.084. [PubMed: 26457833].
  • 16. Gobi K, Mashitah MD, Vadivelu VM. Development and utilization of aerobic granules for the palm oil mill (POM) wastewater treatment. Chem Eng J. 2011;174(1):213-20. doi: 10.1016/j.cej.2011.09.002.
  • 17. Muda K, Aris A, Salim MR, Ibrahim Z, Yahya A, van Loosdrecht MC, et al. Development of granular sludge for textile wastewater treatment. Water Res. 2010;44(15):4341-50. doi: 10.1016/j.watres.2010.05.023. [PubMed: 20580402].
  • 18. Adav SS, Lee DJ, Show KY, Tay JH. Aerobic granular sludge: recent advances. Biotechnol Adv. 2008;26(5):411-23. doi: 10.1016/j.biotechadv.2008.05.002. [PubMed: 18573633].
  • 19. Zhang Q, Hu J, Lee DJ. Aerobic granular processes: Current research trends. Bioresour Technol. 2016;210:74-80. doi: 10.1016/j.biortech.2016.01.098. [PubMed: 26873285].
  • 20. Thanh BX, Visvanathan C, Aim RB. Characterization of aerobic granular sludge at various organic loading rates. Process Biochem. 2009;44(2):242-5. doi: 10.1016/j.procbio.2008.10.018.
  • 21. Zheng YM, Yu HQ, Liu SJ, Liu XZ. Formation and instability of aerobic granules under high organic loading conditions. Chemosphere. 2006;63(10):1791-800. doi: 10.1016/j.chemosphere.2005.08.055. [PubMed: 16293283].
  • 22. Tay JH, Liu QS, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules. Appl Microbiol Biotechnol. 2001;57(1-2):227-33. doi: 10.1007/s002530100766. [PubMed: 11693926].
  • 23. Basuvaraj M, Fein J, Liss SN. Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc. Water Res. 2015;82:104-17. doi: 10.1016/j.watres.2015.05.014. [PubMed: 25997747].
  • 24. Kong Y, Liu YQ, Tay JH, Wong FS, Zhu J. Aerobic granulation in sequencing batch reactors with different reactor height/diameter ratios. Enzyme Microb Technol. 2009;45(5):379-83. doi: 10.1016/j.enzmictec.2009.06.014.
  • 25. Adav SS, Lee DJ, Lai JY. Aerobic granulation in sequencing batch reactors at different settling times. Bioresour Technol. 2009;100(21):5359-61. doi: 10.1016/j.biortech.2009.05.058. [PubMed: 19540757].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments